【題目】甲乙兩支排球隊(duì)進(jìn)行比賽,先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊(duì)獲勝的概率是 ,其余每局比賽甲隊(duì)獲勝的概率都是 .設(shè)各局比賽結(jié)果相互獨(dú)立.
(1)分別求甲隊(duì)3:0,3:1,3:2勝利的概率;
(2)若比賽結(jié)果3:0或3:1,則勝利方得3分,對(duì)方得0分;若比賽結(jié)果為3:2,則勝利方得2分,對(duì)方得1分,求乙隊(duì)得分X的分布列及數(shù)學(xué)期望.

【答案】
(1)解:甲隊(duì)獲勝有三種情形,其每種情形的最后一局肯定是甲隊(duì)勝

①3:0,概率為P1=( 3=

②3:1,概率為P2=C 2×(1﹣ )× = ;

③3:2,概率為P3=C 2×(1﹣ 2× =

∴甲隊(duì)3:0,3:1,3:2勝利的概率:


(2)解:乙隊(duì)得分X,則X的取值可能為0,1,2,3.

由(1)知P(X=0)=P1+P2= ;

P(X=1)=P3= ;

P(X=2)=C (1﹣ 2×( 2× = ;

P(X=3)=(1﹣ 3+C (1﹣ 2×( )× = ;

則X的分布列為

X

3

2

1

0

P

E(X)=3× +2× +1× +0× =


【解析】(1)甲隊(duì)獲勝有三種情形,①3:0,②3:1,③3:2,其每種情形的最后一局肯定是甲隊(duì)勝,分別求出相應(yīng)的概率,最后根據(jù)互斥事件的概率公式求出甲隊(duì)獲得這次比賽勝利的概率;(2)X的取值可能為0,1,2,3,然后利用相互獨(dú)立事件的概率乘法公式求出相應(yīng)的概率,列出分布列,最后根據(jù)數(shù)學(xué)期望公式解之即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)|θ|< ,n為正整數(shù),數(shù)列{an}的通項(xiàng)公式an=sin tannθ,其前n項(xiàng)和為Sn
(1)求證:當(dāng)n為偶函數(shù)時(shí),an=0;當(dāng)n為奇函數(shù)時(shí),an=(﹣1) tannθ;
(2)求證:對(duì)任何正整數(shù)n,S2n= sin2θ[1+(﹣1)n+1tan2nθ].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)某電子商務(wù)平臺(tái)的調(diào)查統(tǒng)計(jì)顯示,參與調(diào)查的1000位上網(wǎng)購(gòu)物者的年齡情況如圖顯示.

(1)已知[30,40)、[40,50)、[50,60)三個(gè)年齡段的上網(wǎng)購(gòu)物者人數(shù)成等差數(shù)列,求a,b的值.
(2)該電子商務(wù)平臺(tái)將年齡在[30,50)之間的人群定義為高消費(fèi)人群,其他的年齡段定義為潛在消費(fèi)人群,為了鼓勵(lì)潛在消費(fèi)人群的消費(fèi),該平臺(tái)決定發(fā)放代金券,高消費(fèi)人群每人發(fā)放50元的代金券,潛在消費(fèi)人群每人發(fā)放100元的代金券,現(xiàn)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購(gòu)者中抽取10人,并在這10人中隨機(jī)抽取3人進(jìn)行回訪,求此三人獲得代金券總和X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面ABCD是菱 形,PA=PB,且側(cè)面PAB⊥平面ABCD,點(diǎn)E是AB的中點(diǎn).

(1)求證:PE⊥AD;

(2)若CA=CB,求證:平面PEC⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)家祖暅提出原理:“冪勢(shì)既同,則積不容異”.其中“冪”是截面積,“勢(shì)”是幾何體的高.原理的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被任一平行于這兩個(gè)平行平面的平面所截,若所截的兩個(gè)截面的面積恒相等,則這兩個(gè)幾何體的體積相等.如圖所示,在空間直角坐標(biāo)系的坐標(biāo)平面內(nèi),若函數(shù)的圖象與軸圍成一個(gè)封閉區(qū)域,將區(qū)域沿軸的正方向上移4個(gè)單位,得到幾何體如圖一.現(xiàn)有一個(gè)與之等高的圓柱如圖二,其底面積與區(qū)域面積相等,則此圓柱的體積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市擬定2016年城市建設(shè)A,B,C三項(xiàng)重點(diǎn)工程,該市一大型城建公司準(zhǔn)備參加這三個(gè)工程的競(jìng)標(biāo),假設(shè)這三個(gè)工程競(jìng)標(biāo)成功與否相互獨(dú)立,該公司對(duì)A,B,C三項(xiàng)重點(diǎn)工程競(jìng)標(biāo)成功的概率分別為a,b, (a>b),已知三項(xiàng)工程都競(jìng)標(biāo)成功的概率為 ,至少有一項(xiàng)工程競(jìng)標(biāo)成功的概率為
(1)求a與b的值;
(2)公司準(zhǔn)備對(duì)該公司參加A,B,C三個(gè)項(xiàng)目的競(jìng)標(biāo)團(tuán)隊(duì)進(jìn)行獎(jiǎng)勵(lì),A項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)2萬(wàn)元,B項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)4萬(wàn)元,C項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)6萬(wàn)元,求競(jìng)標(biāo)團(tuán)隊(duì)獲得獎(jiǎng)勵(lì)金額的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓過點(diǎn),且與圓關(guān)于直線對(duì)稱.

(1)求兩圓的方程;

(2)若直線與直線平行,且截距為7,在上取一橫坐標(biāo)為的點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為,設(shè)中點(diǎn)為.

(。┤,求的值;

(ⅱ)是否存在點(diǎn),使得?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為的正方體中,,分別是的中點(diǎn).

)求異面直線所成角的余弦值.

)在棱上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的圓心為原點(diǎn),且與直線 相切.

(1)求圓C的方程;

(2)點(diǎn)在直線上,過點(diǎn)引圓C的兩條切線, ,切點(diǎn)為, ,求證:直線恒過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案