已知函數(shù)
(1)設(shè),寫出數(shù)列的前5項(xiàng);
(2)解不等式


(1)f(1)=-3,f(2)=-4,f(3)=21,f(4)=32,f(5)=45
(2)不等式的解集是

解析解:(1)由題設(shè)知      
∴f(1)=-3,f(2)=-4,f(3)=21,f(4)=32,f(5)="45.  "
(2)由         
     
∴不等式的解集是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知f(x)、g(x)分別為奇函數(shù)、偶函數(shù),且f(x)+g(x)=2x+2x,求f(x)、g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

隨著機(jī)構(gòu)改革工作的深入進(jìn)行,各單位要減員增效,有一家公司現(xiàn)有職員2a人(140<2a<420,且a為偶數(shù),每人每年可創(chuàng)利10萬(wàn)元.據(jù)評(píng)估,在經(jīng)營(yíng)條件不變的前提下,若裁員x人,則留崗職員每人每年多創(chuàng)利0.1x萬(wàn)元,但公司需付下崗職員每人每年4萬(wàn)元的生活費(fèi),并且該公司正常運(yùn)轉(zhuǎn)情況下,所裁人數(shù)不超過50人,為獲得最大的經(jīng)濟(jì)效益,該公司應(yīng)裁員多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù),其圖象過點(diǎn)(,).
(1)求的值及最小正周期;
(2)將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到函數(shù)的圖象,求函數(shù)在[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(滿分12分)求函數(shù)的單調(diào)區(qū)間及極值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
設(shè)二次函數(shù)滿足下列條件:
①當(dāng)時(shí),其最小值為0,且成立;
②當(dāng)時(shí),恒成立.
(1)求的值;
(2)求的解析式;
(3)求最大的實(shí)數(shù),使得存在,只要當(dāng)時(shí),就有成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)已知定義域?yàn)?i>R的函數(shù)是奇函數(shù).
(I)求a的值,并指出函數(shù)的單調(diào)性(不必說明單調(diào)性理由);
(II)若對(duì)任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本大題滿分12分)
某公司預(yù)計(jì)全年分批購(gòu)入每臺(tái)價(jià)值為2000元的電視機(jī)共3600臺(tái),每批都購(gòu)入x臺(tái),且每批均需付運(yùn)費(fèi)400元,儲(chǔ)存購(gòu)入的電視機(jī)全年所付保管費(fèi)與每批購(gòu)入電視機(jī)的總價(jià)值(不含運(yùn)費(fèi))成正比。若每批購(gòu)入400臺(tái),則全年需用去運(yùn)費(fèi)和保管費(fèi)43600元,F(xiàn)在全年只有24000元資金用于支付運(yùn)費(fèi)和保管費(fèi),請(qǐng)問能否恰當(dāng)安排每批進(jìn)貨的數(shù)量,使資金夠用?寫出你的結(jié)論并說明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案