【題目】如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=

(1)求△ACD的面積;
(2)若BC=2 ,求AB的長.

【答案】
(1)解:因為∠D=2∠B,cos∠B= ,

所以cosD=cos2B=2cos2B﹣1=﹣

因為∠D∈(0,π),

所以sinD=

因為 AD=1,CD=3,

所以△ACD的面積S= = =


(2)解:在△ACD中,AC2=AD2+DC2﹣2ADDCcosD=12.

所以AC=2

因為BC=2 ,

所以 =

所以 AB=4.


【解析】(1)利用已知條件求出D角的正弦函數(shù)值,然后求△ACD的面積;(2)利用余弦定理求出AC,通過BC=2 ,利用正弦定理求解AB的長.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD垂直于底面ABCD,AD=PD,E分別為AP的中點.

(Ⅰ)求證:DE垂直于平面PAB;

(Ⅱ)設BC =AB=2,求直線EB與平面ABD所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司今年一月份推出新產(chǎn)品A,其成本價為492元/件,經(jīng)試銷調(diào)查,銷售量與銷售價的關(guān)系如下表:

銷售價(x/元件)

650

662

720

800

銷售量(y件)

350

333

281

200

由此可知,銷售量y(件)與銷售價x(元/件)可近似看作一次函數(shù)y=kx+b的關(guān)系(通常取表中相距較遠的兩組數(shù)據(jù)所得一次函數(shù)較為精確).
(1)寫出以x為自變量的函數(shù)y的解析式及定義域;
(2)試問:銷售價定為多少時,一月份銷售利潤最大?并求最大銷售利潤和此時的銷售量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=

(1)求△ACD的面積;
(2)若BC=2 ,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法不正確的是

A.命題“對,都有”的否定為“,使得

B.的必要不充分條件

C. “,則 是真命題

D.甲、乙兩位學生參與數(shù)學模擬考試,設命題是“甲考試及格,是“乙考試及格則命題“至少有一位學生不及格”可表示

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設全集為R,集合A=(﹣∞,﹣1)∪(3,+∞),記函數(shù)f(x)= 的定義域為集合B
(1)分別求A∩B,A∩RB;
(2)設集合C={x|a+3<x<4a﹣3},若B∩C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知A為左頂點,F是左焦點,l交OA的延長線于點B,點P,Q在橢圓上,有PD⊥l于點D,QF⊥AO,則橢圓的離心率是① ; ② ; ③ ; ④ ; ⑤ 其中正確的是(

A.①②
B.①③④
C.②③⑤
D.①②③④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),mR

(Ⅰ)當m=e(e為自然對數(shù)的底數(shù))時,求f(x)的極小值;

(Ⅱ)討論函數(shù)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=alnx﹣x2+1.

)若曲線y=fx)在x=1處的切線方程為4x﹣y+b=0,求實數(shù)ab的值;

)討論函數(shù)fx)的單調(diào)性;

查看答案和解析>>

同步練習冊答案
<rt id="8veqq"><delect id="8veqq"></delect></rt>
  • <rt id="8veqq"></rt>