【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,直線 的參數(shù)方程為 ( 為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓 的極坐標(biāo)方程為 .
(1)寫出圓 的直角坐標(biāo)方程;
(2) 為直線 上一動(dòng)點(diǎn),當(dāng) 到圓心 的距離最小時(shí),求 的直角坐標(biāo).
【答案】
(1)解:由 ,得 ,從而有 ,
所以
(2)解:設(shè) ,又 ,
則 ,
故當(dāng) 時(shí), 取得最小值,此時(shí) 點(diǎn)的坐標(biāo)為
【解析】(1)將方程兩邊同時(shí)乘以,然后根據(jù)x2+y2,y=sin即可求解;(2)根據(jù)圓C的直角坐標(biāo)方程寫出圓心C的坐標(biāo),根據(jù)直線的參數(shù)方程可設(shè)出點(diǎn)P的坐標(biāo)為(3+t,t),然后根據(jù)兩點(diǎn)間距離公式寫出即可求出的最小值及取得最小值時(shí)x的值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線的參數(shù)方程的相關(guān)知識可以得到問題的答案,需要掌握經(jīng)過點(diǎn),傾斜角為的直線的參數(shù)方程可表示為(為參數(shù)).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且a1=﹣1, =Sn , 求數(shù)列{an}的前n項(xiàng)和Sn= , 通項(xiàng)公式an= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形是正方形, , , , 都是等邊三角形, 、、、分別是線段、、、的中點(diǎn),分別以、、、為折痕將四個(gè)等邊三角形折起,使得、、、四點(diǎn)重合于一點(diǎn),得到一個(gè)四棱錐.對于下面四個(gè)結(jié)論:
①與為異面直線; ②直線與直線所成的角為
③平面; ④平面平面;
其中正確結(jié)論的個(gè)數(shù)有( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;
(II)解關(guān)于x的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是對數(shù)函數(shù).
(1) 若函數(shù),討論的單調(diào)性;
(2) 若,不等式的解集非空,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足: , .
()求, , 的值.
()求證:數(shù)列是等比數(shù)列.
()令,如果對任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) , ,(a>0).若對任意實(shí)數(shù)x1 , 都存在正數(shù)x2 , 使得g(x2)=f(x1)成立,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是公差不為零的等差數(shù)列,滿足數(shù)列的通項(xiàng)公式為
(1)求數(shù)列的通項(xiàng)公式;
(2)將數(shù)列,中的公共項(xiàng)按從小到大的順序構(gòu)成數(shù)列,請直接寫出數(shù)列的通項(xiàng)公式;
(3)記,是否存在正整數(shù) ,使得成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;
(II)解關(guān)于x的不等式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com