【題目】為了調(diào)查某野生動物保護區(qū)內(nèi)某種野生動物的數(shù)量,調(diào)查人員某天逮到這種動物1200只作好標記后放回,經(jīng)過一星期后,又逮到這種動物1000只,其中作過標記的有100只,按概率的方法估算,保護區(qū)內(nèi)有多少只該種動物.

【答案】保擴區(qū)內(nèi)約有12000只該種動物.

【解析】

本題是由樣本來估計總體,逮到的樣本中標記的頻率為,之前一個標記了只,從而可以估計出動物的總數(shù).

解:設保護區(qū)內(nèi)這種野生動物有只,假定每只動物被逮到的可能性是相同的,那么從這種野生動物中任逮一只,設事件A={帶有記號的動物},則由古典概型可知,.第二次被逮到的1000只中,有100只帶有記號,即事件A發(fā)生的頻數(shù),由概率的統(tǒng)計定義可知,故,解得.

所以,保擴區(qū)內(nèi)約有12000只該種動物.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(題文)已知正方體的棱長為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知冪函數(shù)上是增函數(shù),且在定義域上是偶函數(shù).

1)求p的值,并寫出相應的函數(shù)的解析式.

2)對于(1)中求得的函數(shù),設函數(shù),問是否存在實數(shù),使得在區(qū)間上是減函數(shù),且在區(qū)間上是增函數(shù)?若存在,請求出q;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動型汽車2萬張,為了節(jié)能減排和控制總量,從2013年開始,每年電動型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少05萬張,同時規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動車的牌照的數(shù)量維持在這一年的水平不變.

1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)量構成數(shù)列,每年發(fā)放電動型汽車牌照數(shù)為構成數(shù)列,完成下列表格,并寫出這兩個數(shù)列的通項公式;

2)從2013年算起,累計各年發(fā)放的牌照數(shù),哪一年開始超過200萬張?











查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著小汽車的普及,“駕駛證”已經(jīng)成為現(xiàn)代人“必考”證件之一.若某人報名參加了駕駛證考試,要順利地拿到駕駛證,需要通過四個科目的考試,其中科目二為場地考試在每一次報名中,每個學員有次參加科目二考試的機會(這次考試機會中任何一次通過考試,就算順利通過,即進入下一科目考試,或次都沒有通過,則需要重新報名),其中前次參加科目二考試免費,若前次都沒有通過,則以后每次參加科目二考試都需要交元的補考費.某駕校通過幾年的資料統(tǒng)計,得到如下結論:男性學員參加科目二考試,每次通過的概率均為,女性學員參加科目二考試,每次通過的概率均為.現(xiàn)有一對夫妻同時報名參加駕駛證考試,在本次報名中,若這對夫妻參加科目二考試的原則為:通過科目二考試或者用完所有機會為止.

1)求這對夫妻在本次報名中參加科目二考試都不需要交補考費的概率;

2)求這對夫妻在本次報名中參加科目二考試產(chǎn)生的補考費用之和為元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產(chǎn)一種機器的固定成本為0.5萬元,但每生產(chǎn)100臺,需要加可變成本(即另增加投入)0.25萬元,市場對此產(chǎn)品的年求量為500臺,銷售的收入函數(shù)為(萬元)(),其中是產(chǎn)品售出的數(shù)量(單位:百臺).

1)把利潤表示為年產(chǎn)量的函數(shù);

2)年產(chǎn)量是多少時,工廠所得利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)已知拋物線和圓的公共弦過拋物線的焦點,且弦長為4.

(1)求拋物線和圓的方程;

(2)過點的直線與拋物線相交于兩點拋物線在點處的切線與軸的交點為,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓C:的離心率為,并且橢圓經(jīng)過點P(1,),直線l的方程為x=4.

(1)求橢圓的方程;

(2)已知橢圓內(nèi)一點E(1,0),過點E作一條斜率為k的直線與橢圓交于A,B兩點,交直線l于點M,記PA,PB,PM的斜率分別為k1,k2,k3.問:是否存在常數(shù),使得k1+k2k3?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù),下列判斷正確的是( )

A. 有最大值和最小值

B. 的圖象的對稱中心為

C. 上存在單調(diào)遞減區(qū)間

D. 的圖象可由的圖象向左平移個單位而得

查看答案和解析>>

同步練習冊答案