【題目】近年來,鄭州經(jīng)濟(jì)快速發(fā)展,躋身新一線城市行列,備受全國矚目.無論是市內(nèi)的井字形快速交通網(wǎng),還是輻射全國的米字形高鐵路網(wǎng),鄭州的交通優(yōu)勢在同級別的城市內(nèi)無能出其右.為了調(diào)查鄭州市民對出行的滿意程度,研究人員隨機(jī)抽取了1000名市民進(jìn)行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計(jì)成如下的頻率分布直方圖,其中

(I)求的值;

(Ⅱ)求被調(diào)查的市民的滿意程度的平均數(shù),眾數(shù),中位數(shù);

(Ⅲ)若按照分層抽樣從,中隨機(jī)抽取8人,再從這8人中隨機(jī)抽取2人,求至少有1人的分?jǐn)?shù)在的概率.

【答案】(Ⅰ) (Ⅱ) 平均數(shù)74.9,眾數(shù)75.14,中位數(shù)75;(Ш)

【解析】

I)根據(jù)頻率之和為列方程,結(jié)合求出的值.II)利用各組中點(diǎn)值乘以頻率然后相加,求得平均數(shù).利用中位數(shù)是面積之和為的地方,列式求得中位數(shù).以頻率分布直方圖最高一組的中點(diǎn)作為中位數(shù).III)先計(jì)算出從,中分別抽取人和人,再利用列舉法和古典概型概率計(jì)算公式,計(jì)算出所求的概率.

解:(I)依題意得,所以,

,所以

(Ⅱ)平均數(shù)為

中位數(shù)為

眾數(shù)為

(Ш)依題意,知分?jǐn)?shù)在的市民抽取了2人,記為,分?jǐn)?shù)在的市民抽取了6人,記為1,2,3,4,5,6,

所以從這8人中隨機(jī)抽取2人所有的情況為:

,

共28種,

其中滿足條件的為,共13種,設(shè)“至少有1人的分?jǐn)?shù)在”的事件為,則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若為奇函數(shù),求的值;

(2)試判斷內(nèi)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游愛好者計(jì)劃從3個亞洲國家A1A2A33個歐洲國家B1,B2,B3中選擇2個國家去旅游.

(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;

(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】九十年代,政府間氣候變化專業(yè)委員會(IPCC)提供的一項(xiàng)報告指出:使全球氣候逐年變暖的一個重要因素是人類在能源利用與森林砍伐中使CO2濃度增加據(jù)測,1990年、1991年、1992年大氣中的CO2濃度分別比1989年增加了1個可比單位、3個可比單位、6個可比單位。若用函數(shù)模擬九十年代中每年CO2濃度增加的可比單位數(shù)y與年份增加數(shù)x的關(guān)系,模擬函數(shù)可選用二次函數(shù)或函數(shù)(其中ab、c為常數(shù))

(Ⅰ)寫出這兩個函數(shù)的解釋式;

(Ⅱ)若知1994年大氣中的CO2濃度比1989年增加了16個可比單位,請問用以上哪個函數(shù)作為模擬函數(shù)與1994年的實(shí)際數(shù)據(jù)更接近?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在不為零的常數(shù),使得函數(shù)對定義域內(nèi)的任一均有,則稱函數(shù)為周期函數(shù),其中常數(shù)就是函數(shù)的一個周期

(Ⅰ)證明:若存在不為零的常數(shù)使得函數(shù)對定義域內(nèi)的任一均有,則此函數(shù)是周期函數(shù)

(Ⅱ)若定義在上的奇函數(shù)滿足,試探究此函數(shù)在區(qū)間內(nèi)的零點(diǎn)的最少個數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角、、的對邊分別為、、,的外接圓半徑.

1)若,,,求

2)在中,若為鈍角,求證:;

3)給定三個正實(shí)數(shù)、、,其中,問:、、滿足怎樣的關(guān)系時,以、為邊長,為外接圓半徑的不存在,存在一個或存在兩個(全等的三角形算作同一個)?在存在的情兄下,用、表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系上一動點(diǎn)到點(diǎn)的距離是點(diǎn)到點(diǎn)的距離的2倍。

(1)求點(diǎn)的軌跡方程;

(2)若點(diǎn)與點(diǎn)關(guān)于點(diǎn)對稱,求,兩點(diǎn)間距離的最大值。

(3)若過點(diǎn)的直線與點(diǎn)的軌跡相交于、兩點(diǎn),,則是否存在直線,使 取得最大值,若存在,求出此時的方程,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量單位:噸,將數(shù)據(jù)按照,,分成9組,制成了如圖所示的頻率分布直方圖.

(1)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù)說明理由;

(2)估計(jì)居民月均用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sinωxcosωx﹣ (ω>0)圖象的兩條相鄰對稱軸為
(1)求函數(shù)y=f(x)的對稱軸方程;
(2)若函數(shù)y=f(x)﹣ 在(0,π)上的零點(diǎn)為x1 , x2 , 求cos(x1﹣x2)的值.

查看答案和解析>>

同步練習(xí)冊答案