設(shè)定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=2x(1-x),求f(-
252
)值.
分析:由已知中函數(shù)f(x)滿足f(x+2)=-f(x),我們可以求出函數(shù)f(x)周期為4的周期函數(shù),結(jié)合已知中函數(shù)f(x)是定義在R上的奇函數(shù),進(jìn)而得到(-
25
2
)=-f(
1
2
),由于f(
1
2
)=
1
2
,得到答案.
解答:解:∵函數(shù)f(x)滿足f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
即函數(shù)f(x)周期為4的周期函數(shù),
故f(-
25
2
)=f(4×3-
25
2
)=f(-0.5)
又∵函數(shù)f(x)是定義在R上的奇函數(shù)
∴f(-0.5)=-f(0.5)=-
1
2

故f(-
25
2
)值為:-
1
2
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的周期性,函數(shù)的奇偶性,函數(shù)的值,其中根據(jù)已知條件,得到函數(shù)f(x)周期為4的周期函數(shù),是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的奇函數(shù)f(x)滿足f(x+3)=-f(1-x),若f(3)=2,則f(2013)=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的奇函數(shù)f(x)滿足f(x+π)=f(x),當(dāng)x∈[0,
π
2
)
時(shí),f(x)=sinx,則f(
11π
6
)
=
-
1
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的奇函數(shù)f(x)=ax3+bx2+cx+d,a,b,c,d∈R.當(dāng)x=-1時(shí),f(x)取得極大值
2
3

(1)求函數(shù)y=f(x)的表達(dá)式;
(2)判斷函數(shù)y=f(x)的圖象上是否存在兩點(diǎn),使得以這兩點(diǎn)為切點(diǎn)的切線互相垂直,且切
點(diǎn)的橫坐標(biāo)在區(qū)間[-
2
2
]上,并說明理由;
(3)設(shè)xn=1-2-n,ym=
2
(3-m-1)(m,n∈N*),求證:|f(xn)-f(ym)|<
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的奇函數(shù)f(x)滿足:對(duì)每一個(gè)定義在R上的x都有f(x+1)+f(x)=0,則f(5)=
0
0

查看答案和解析>>

同步練習(xí)冊(cè)答案