【題目】如圖所示,在棱長(zhǎng)為2的正方體ABCD﹣A1B1C1D1中,E、F分別為DD1、DB的中點(diǎn).

(1)求證:EF⊥B1C;
(2)求三棱錐E﹣FCB1的體積.

【答案】
(1)證明:∵ABCD﹣A1B1C1D1是正方體,

∴B1C⊥AB,B1C⊥BC1,又AB∩BC1=B

∴B1C⊥平面ABC1D1,

∴B1C⊥BD1

又∵E、F分別為DD1、DB的中點(diǎn),∴EF∥BD1

∴EF⊥B1C


(2)解:∵CF⊥平面BDD1B1,

∴CF⊥平面EFB1,

由已知得CF=BF= ,

∵EF= BD1 , =

,即∠EFB1=90°,

= =


【解析】(1)由已知在棱長(zhǎng)為2的正方體ABCD﹣A1B1C1D1中,E、F分別為DD1、DB的中點(diǎn),可得B1C⊥AB,B1C⊥BC1 , 進(jìn)一步得到B1C⊥平面ABC1D1 , 進(jìn)而B1C⊥BD1 , 再由中位線定理即可得到EF⊥B1C;(2)由題意,可先證明出CF⊥平面BDD1B1 , 由此得出三棱錐的高,再求出底面△B1EF的面積,然后由等積法把三棱錐E﹣FCB1的體積轉(zhuǎn)化為C﹣B1EF的體積求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)老師對(duì)本校2013屆高三學(xué)生某次聯(lián)考的數(shù)學(xué)成績(jī)進(jìn)行分析,按1:50進(jìn)行分層抽樣抽取20名學(xué)生的成績(jī)進(jìn)行分析,分?jǐn)?shù)用莖葉圖記錄如圖所示(部分?jǐn)?shù)據(jù)丟失),得到的頻率分布表如下:

分?jǐn)?shù)段(分)

[50,70]

[70,90]

[90,110]

[110,130]

[130,150]

合計(jì)

頻數(shù)

b

頻率

a

0.25


(1)表中a,b的值及分?jǐn)?shù)在[90,100)范圍內(nèi)的學(xué)生,并估計(jì)這次考試全校學(xué)生數(shù)學(xué)成績(jī)及格率(分?jǐn)?shù)在[90,150]范圍為及格);
(2)從大于等于110分的學(xué)生隨機(jī)選2名學(xué)生得分,求2名學(xué)生的平均得分大于等于130分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖四棱錐的底面為菱形,且, , .

(Ⅰ)求證:平面平面;

(Ⅱ)二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四面體中, 底面的重心, 為線段上一點(diǎn),且平面,則直線所成角的余弦值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(x)+f(2﹣x)=2,當(dāng)x∈(0,1]時(shí),f(x)=x2 , 當(dāng)x∈(﹣1,0]時(shí), ,若定義在(﹣1,3)上的函數(shù)g(x)=f(x)﹣t(x+1)有三個(gè)不同的零點(diǎn),則實(shí)數(shù)t的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公比小于1的等比數(shù)列的前項(xiàng)和為

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),若,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;

(2)計(jì)算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中日島爭(zhēng)端越來越引起社會(huì)關(guān)注,校對(duì)高一名學(xué)生進(jìn)行了一次知識(shí)測(cè)試,并從中了部學(xué)生的成績(jī)滿分作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖

1填寫答題卡頻率分布表中的空格, 補(bǔ)全頻率分布直方圖, 并標(biāo)出每個(gè)小矩形對(duì)應(yīng)的縱軸數(shù)據(jù);

2請(qǐng)你估算該年級(jí)的平均數(shù)及中位數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校餐廳每天供應(yīng)500名學(xué)生用餐,每星期一有A、B兩種菜可供選擇.調(diào)查表明,凡是在這星期一選A種菜的,下星期一會(huì)有20%改選B種菜;而選B種菜的,下星期一會(huì)有30%改選A菜.用an , bn分別表示在第n個(gè)星期選A的人數(shù)和選B的人數(shù),若a1=300,則a20=(
A.260
B.280
C.300
D.320

查看答案和解析>>

同步練習(xí)冊(cè)答案