【題目】下列各式的大小關(guān)系正確的是(
A.sin11°>sin168°
B.sin194°<cos160°
C.tan(﹣ )<tan(﹣
D.cos(﹣ )>cos

【答案】D
【解析】解:sin11°>sin168°=sin12°,不正確; sin194°=﹣sin14°<0,cos160°=﹣cos20°<﹣sin20°.∵﹣sin20°<﹣sin10°,
∴sin194°<cos160°不正確.
tan(﹣ )=﹣tan <0,tan(﹣ )=﹣tan <0,又tan <tan ,所以tan(﹣ )>tan(﹣ ),所以C不正確.
∵2π> ,∴cos >cos ,可得cos(﹣ )>cos ,所以D正確.
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的各項均為正數(shù),Sn是數(shù)列{an}的前n項和,且4Sn=an2+2an﹣3.
(1)求數(shù)列{an}的通項公式;
(2)已知bn=2n , 求Tn=a1b1+a2b2+…+anbn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為一直角三角形草坪,其中∠C=90°,BC=2米,AB=4米,為了重建草坪,設(shè)計師準備了兩套方案:
方案一:擴大為一個直角三角形,其中斜邊DE過點B,且與AC平行,DF過點A,EF過點C;
方案二:擴大為一個等邊三角形,其中DE過點B,DF過點A,EF過點C.
(1)求方案一中三角形DEF面積S1的最小值;
(2)求方案二中三角形DEF面積S2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓),若橢圓上的一動點到右焦點的最短距離為,且右焦點到直線的距離等于短半軸的長,已知,過的直線與橢圓交于兩點.

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)校體育節(jié)中,某班全體40名同學(xué)參加跳繩、踢毽子兩項比賽的人數(shù)統(tǒng)計如下:

參加跳繩的同學(xué)

未參加跳繩的同學(xué)

參加踢毽的同學(xué)

9

4

未參加踢毽的同學(xué)

7

20

(1)從該班隨機選1名同學(xué),求該同學(xué)至少參加上述一項活動的概率;

(2)已知既參加跳繩又參加踢毽的9名同學(xué)中,有男生5名,女生4名,現(xiàn)從這5名男生,4名女生中各隨機挑選1人,求男同學(xué)甲未被選中且女同學(xué)乙被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某算法的程序圖如圖所示,其中輸入的變量x在1,2,3,…,30這30個整數(shù)中等可能隨機產(chǎn)生.
(1)分別求出按程序框圖正確編程運行時輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學(xué)依據(jù)自己對程序框圖的理解,各自編寫程序重復(fù)運行n次后,統(tǒng)計記錄了輸出y的值為i(i=1,2,3)的頻數(shù),下面是甲、乙所作頻數(shù)統(tǒng)計表的部分數(shù)據(jù): 甲的頻數(shù)統(tǒng)計表(部分)

運行次數(shù)

輸出y=1的頻數(shù)

輸出y=2的頻數(shù)

輸出y=3的頻數(shù)

50

24

19

7

2000

1027

776

197

乙的頻數(shù)統(tǒng)計表(部分)

運行次數(shù)

輸出y=1的頻數(shù)

輸出y=2的頻數(shù)

輸出y=3的頻數(shù)

50

26

11

13

2000

1051

396

553

當n=2000時,根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分數(shù)表示),并判斷甲、乙中誰所編寫的程序符合算法要求的可能性較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為圓, , 是圓上的動點,線段的垂直平分線交于點.

(1)求點的軌跡的方程;

2)設(shè), ,過點的直線與曲線交于點(異于點),過點的直線與曲線交于點,直線傾斜角互補.

①直線的斜率是否為定值?若是,求出該定值;若不是,說明理由;

②設(shè)的面積之和為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項和Sn , 若a3+a7﹣a10=8,a11﹣a4=4,則S13等于(
A.152
B.154
C.156
D.158

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為2的正方體中,
(1)求異面直線BD與B1C所成的角
(2)求證:平面ACB1⊥平面B1D1DB.

查看答案和解析>>

同步練習(xí)冊答案