【題目】某地區(qū)工會(huì)利用“健步行” 開(kāi)展健步走積分獎(jiǎng)勵(lì)活動(dòng).會(huì)員每天走5 千步可獲積分30分(不足5千步不積分), 每多走2千步再積20分(不足2千步不積分).為了解會(huì)員的健步走情況,工會(huì)在某天從系統(tǒng)中隨機(jī)抽取了 1000名會(huì)員,統(tǒng)計(jì)了當(dāng)天他們的步數(shù),并將樣本數(shù)據(jù)分為,九組,整理得到如圖頻率分布直方圖:
(1)求當(dāng)天這1000名會(huì)員中步數(shù)少于11千步的人數(shù);
(2)從當(dāng)天步數(shù)在的會(huì)員中按分層抽樣的方式抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人積分之和不少于200分的概率;
(3)寫(xiě)出該組數(shù)據(jù)的中位數(shù)(只寫(xiě)結(jié)果).
【答案】(1)300(2)(3)
【解析】分析:(1)根據(jù)直方圖的性質(zhì),求出每個(gè)小矩形的面積可得到健步走的步數(shù)在內(nèi)的頻率,
健步走的步數(shù)在內(nèi)的頻率,健步走的步數(shù)在內(nèi)的頻率,健步走的步數(shù)在內(nèi)的頻率,從而可得結(jié)果;(2)按分層抽樣的方法,在內(nèi)應(yīng)抽取3人,在內(nèi)應(yīng)抽取2人,在內(nèi)應(yīng)抽取1人,利用列舉法人中任意選取人共有種,其中這2人的積分之和不少于的情況共有種,由古典概型概率公式可得結(jié)果;(3)根據(jù)頻率分布直方圖的性質(zhì)能求出中位數(shù).
詳解:(Ⅰ)這1000名會(huì)員中健步走的步數(shù)在內(nèi)的人數(shù)為;
健步走的步數(shù)在內(nèi)的人數(shù)為;
健步走的步數(shù)在內(nèi)的人數(shù)為;
健步走的步數(shù)在內(nèi)的人數(shù)為;
.
所以這1000名會(huì)員中健步走的步數(shù)少于11千步的人數(shù)為300人.
(Ⅱ)按分層抽樣的方法,在內(nèi)應(yīng)抽取3人,記為,,,每人的積分是90分;在內(nèi)應(yīng)抽取2人,記為,,每人的積分是110分;
在內(nèi)應(yīng)抽取1人,記為,每人的積分是130分;
從6人中隨機(jī)抽取2人,有,,,,,,,,,,,,,,共15種方法.
所以從6人中隨機(jī)抽取2人,這2人的積分之和不少于200分的有,,,
,,,,,,,,共12種方法.
設(shè)從6人中隨機(jī)抽取2人,這2人的積分之和不少于200分為事件,則
.
所以從6人中隨機(jī)抽取2人,這2人的積分之和不少于200分的概率為.
(Ⅲ)中位數(shù)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從參加高一年級(jí)期中考試的學(xué)生中隨機(jī)抽出60名學(xué)生,將其物理成績(jī)(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖,觀察圖形的信息,回答下列問(wèn)題:
(1)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)本次考試中的平均分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+|x﹣1|,a∈R.
(Ⅰ)若不等式f(x)≥2﹣|x﹣1|恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),直線(xiàn)y=m與函數(shù)f(x)的圖象圍成三角形,求m的最大值及此時(shí)圍成的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐 中,底面 為菱形,且直線(xiàn) 又棱 為 的中點(diǎn),
(Ⅰ) 求證:直線(xiàn) ;
(Ⅱ) 求直線(xiàn) 與平面 的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 : ,右頂點(diǎn)為 ,離心率為 ,直線(xiàn) : 與橢圓 相交于不同的兩點(diǎn) , ,過(guò) 的中點(diǎn) 作垂直于 的直線(xiàn) ,設(shè) 與橢圓 相交于不同的兩點(diǎn) , ,且 的中點(diǎn)為 .
(Ⅰ)求橢圓 的方程;
(Ⅱ)設(shè)原點(diǎn) 到直線(xiàn) 的距離為 ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn) ,過(guò)點(diǎn) 的直線(xiàn) ( 為參數(shù))與曲線(xiàn) 相交于點(diǎn) , 兩點(diǎn).
(1)求曲線(xiàn) 的平面直角坐標(biāo)系方程和直線(xiàn) 的普通方程;
(2)求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐的底面為直角梯形, .點(diǎn)是的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)已知平面底面,且.在棱上是否存在點(diǎn),使?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下關(guān)于命題的說(shuō)法正確的有(填寫(xiě)所有正確命題的序號(hào)).
①“若 ,則函數(shù) ( ,且 )在其定義域內(nèi)是減函數(shù)”是真命題;
②命題“若 ,則 ”的否命題是“若 ,則 ”;
③命題“若 , 都是偶數(shù),則 也是偶數(shù)”的逆命題為真命題;
④命題“若 ,則 ”與命題“若 ,則 ”等價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平行四邊形 的三個(gè)頂點(diǎn)坐標(biāo)為 , , .
(Ⅰ)求頂點(diǎn) 的坐標(biāo);
(Ⅱ)求四邊形 的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com