【題目】已知函數(shù)滿足,若在區(qū)間內(nèi)關(guān)于的方程恰有4個不同的實數(shù)解,則實數(shù)的取值范圍是___________.
【答案】
【解析】
由題意,把在區(qū)間內(nèi)關(guān)于的方程恰有4個不同的實數(shù)解,轉(zhuǎn)化為函數(shù)與的圖象在區(qū)間內(nèi)有4個不同的交點,作出函數(shù)的圖象,結(jié)合圖象,分類討論,即可求解,得到答案.
由題意,函數(shù)滿足,即,即函數(shù)是以6為周期的周期函數(shù),
又由在區(qū)間內(nèi)關(guān)于的方程恰有4個不同的實數(shù)解,
即在區(qū)間內(nèi)關(guān)于的方程恰有4個不同的實數(shù)解,
即函數(shù)與的圖象在區(qū)間內(nèi)有4個不同的交點,
又由函數(shù),作出函數(shù)的圖象,如圖所示,
由直線,可知直線恒過點,
當時,此時直線與函數(shù)的圖象恰有4個交點,
當直線過點時,此時,即,此時函數(shù)與直線有5個同的交點,
當直線與半圓相切時,此時圓心到直線的距離等于圓的半徑,即,解得或(舍去),此時函數(shù)與直線有3個同的交點,
此時函數(shù)與直線恰有4個同的交點,則
綜上可知,實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標原點,拋物線C:y2=8x上一點A到焦點F的距離為6,若點P為拋物線C準線上的動點,則|OP|+|AP|的最小值為( )
A. 4B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】楊輝,字謙光,南宋時期杭州人.在他1261年所著的《詳解九章算法》一書中,輯錄了如圖所示的三角形數(shù)表,稱之為“開方作法本源”圖,并說明此表引自11世紀中葉(約公元1050年)賈憲的《釋鎖算術(shù)》,并繪畫了“古法七乘方圖”.故此,楊輝三角又被稱為“賈憲三角”.楊輝三角是一個由數(shù)字排列成的三角形數(shù)表,一般形式如下:
基于上述規(guī)律,可以推測,當時,從左往右第22個數(shù)為_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點,且離心率為.直線與軸正半軸和軸分別交于點、,與橢圓分別交于點、,各點均不重合且滿足 ,.
(1)求橢圓的標準方程;
(2)若,試證明:直線過定點并求此定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是函數(shù)(其中常數(shù))圖象上的兩個動點,點,若的最小值為0,則函數(shù)的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某健身館在2019年7、8兩月推出優(yōu)惠項目吸引了一批客戶.為預(yù)估2020年7、8兩月客戶投入的健身消費金額,健身館隨機抽樣統(tǒng)計了2019年7、8兩月100名客戶的消費金額,分組如下:(單位:元),得到如圖所示的頻率分布直方圖:
(1)若把2019年7、8兩月健身消費金額不低于800元的客戶,稱為“健身達人”,經(jīng)數(shù)據(jù) 處理,現(xiàn)在列聯(lián)表中得到一定的相關(guān)數(shù)據(jù),請補全空格處的數(shù)據(jù),并根據(jù)列聯(lián)表判斷是否有的把握認為“健身達人”與性別有關(guān)?
健身達人 | 非健身達人 | 總計 | |
男 | 10 | ||
女 | 30 | ||
總計 |
(2)為吸引顧客,在健身項目之外,該健身館特別推出健身配套營養(yǎng)品的銷售,現(xiàn)有兩種促銷方案.
方案一:每滿800元可立減100元;
方案二:金額超過800元可抽獎三次,每次中獎的概率為,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7折.
若某人打算購買1000元的營養(yǎng)品,請從實際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.
(3)在(2)中的方案二中,金額超過800元可抽獎三次,假設(shè)三次中獎結(jié)果互不影響,且三次中獎的概率為,記為銳角的內(nèi)角,
求證:
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點的雙曲線C的漸近線方程為y=±2x,且該雙曲線過點(2,2).
(1)求雙曲線C的標準方程;
(2)點A為雙曲線C上任一點,F1F2分別為雙曲線的左右焦點,過其中的一個焦點作∠F1AF2的角平分線的垂線,垂足為點P,求點P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),a∈R.
(1)若函數(shù)f(x)在x=1處的切線為y=2x+b,求a,b的值;
(2)記g(x)=f(x)+ax,若函數(shù)g(x)在區(qū)間(0,)上有最小值,求實數(shù)a的取值范圍;
(3)當a=0時,關(guān)于x的方程f(x)=bx2有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com