【題目】如圖,在邊長為2的正六邊形ABCDEF中,動圓Q的半徑為1,圓心在線段CD(含端點)上運動,P是圓Q上及內(nèi)部的動點,設(shè)向量 (m,n為實數(shù)),則m+n的取值范圍是(  )

A.(1,2]
B.[5,6]
C.[2,5]
D.[3,5]

【答案】C
【解析】解:如圖所示,

①設(shè)點O為正六邊形的中心,則

當(dāng)動圓Q的圓心經(jīng)過點C時,與邊BC交于點P,點P為邊BC的中點.連接OP,

共線,∴存在實數(shù)t,使得

= + = = ,

此時m+n=1+t+1﹣t=2,取得最小值.

②當(dāng)動圓Q的圓心經(jīng)過點D時,取AD的延長線與⊙Q的交點P時.

= =

此時m+n= =5取得最大值.

因此m+n的取值范圍是[2,5].

所以答案是:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項為a1=2,且滿足a1+a2+…+an﹣an+1=﹣2.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足 ,求數(shù)列{anbn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣1+aex
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)求f(x)的極值;
(3)當(dāng)a=1時,曲線y=f(x)與直線y=kx﹣1沒有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義一個集合A的所有子集組成的集合叫做集合A的冪集,記為P(A),用n(A)表示有限集A的元素個數(shù),給出下列命題:①對于任意集合A,都有AP(A);②存在集合A,使得n[P(A)]=3;③用表示空集,若A∩B=,則P(A)∩P(B)=;④若A B,,則P(A) P(B);⑤若n(A)-n(B)=1,則n[P(A)]=2×n[P(B)]其中正確的命題個數(shù)為( )。
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓 與雙曲線 有相同的焦點,且橢圓 過點 ,若直線 與直線 平行且與橢圓 相交于點 ,B(x2,y2).

(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 求三角形 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC是等邊三角形,邊長為4,BC邊的中點為D,橢圓W以A,D為左、右兩焦點,且經(jīng)過B、C兩點.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過點D且x軸不垂直的直線l交橢圓于M,N兩點,求證:直線BM與CN的交點在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐P﹣ABC中,PA=PC,底面ABC為正三角形.

(Ⅰ)證明:AC⊥PB;
(Ⅱ)若平面PAC⊥平面ABC,AC=PC=2,求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=2x2﹣mx+2當(dāng)x∈[﹣2,+∞)時是增函數(shù),則m的取值范圍是( 。
A.(﹣∞,+∞)
B.[8,+∞)
C.(﹣∞,﹣8]
D.(﹣∞,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣x﹣ (a∈R),在定義域內(nèi)有兩個不同的極值點x1 , x2(x1<x2).
( I)求a的取值范圍;
( II)求證:x1+x2>2e.

查看答案和解析>>

同步練習(xí)冊答案