設(shè)變量x,y滿足約束條件
x≥0
y≥0
x+y-2≤0
,則目標(biāo)函數(shù)z=2x+y的最大值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,進(jìn)行平移即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=2x+y,得y=-2x+z,
平移直線y=-2x+z,由圖象可知當(dāng)直線y=-2x+z經(jīng)過點(2,0),
直線y=-2x+z的截距最大,此時z最大,此時z=2×2=4,
故答案為:4.
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2014年春晚過后,為了研究演員上春晚次數(shù)與受關(guān)注度的關(guān)系,某網(wǎng)站對其中一位經(jīng)常上春晚的演員上春晚次數(shù)與受關(guān)注度進(jìn)行了統(tǒng)計,得到如下數(shù)據(jù):
上春晚次數(shù)x(單位:次) 2 4 6 8 10
粉絲數(shù)量y(單位:萬人) 10 20 40 80 100
(Ⅰ)若該演員的粉絲數(shù)量y與上春晚次數(shù)x滿足線性回歸方程,試求回歸方程
y
=
b
x+
a
,并就此分析,該演員上春晚12次時的粉絲數(shù);
(Ⅱ)若用
yi
xi
=(i=1,2,3,4,5)表示統(tǒng)計數(shù)據(jù)時粉絲的“即時均值”(精確到整數(shù))
(1)求這5次統(tǒng)計數(shù)據(jù)時粉絲的“即時均值”的方差;
(2)從“即時均值”中任選3組,求這三組數(shù)據(jù)之和不超過20的概率.參考公式:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n
.
xy
n
i=1
x
2
i
-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos(-
17π
6
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|log2x<1,x∈R},則∁RA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn={A|A=(a1,a2,a3,…,an),ai=2012或2013,i=1,2,3,…,n}(n≥2),對于U,V∈Sn,d(U,V)表示U,V中相對應(yīng)的元素不同的個數(shù).
(1)令U=(2013,2013,2013,2013,2013),存在m個V∈S5,使得d(U,V)=2.則m=
 
;
(2)令U=(a1,a2,a3,…,an),若V∈Sn,則所有d(U,V)之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知拋物線的參數(shù)方程為
x=4t2
y=4t
(t為參數(shù)),焦點為F,準(zhǔn)線為l1,直線l2的參數(shù)方程為
x=1+
1
2
m
y=
3
2
m
(m為參數(shù)).若直線l2與拋物線在x軸上方的部分相交于點A,是AM⊥l1,垂足為M,則△AMF的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的流程圖的輸出S的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=4x的焦點為F,過點F且斜率為1的直線交C于A、B兩點,M是x軸上一動點,那么
MA
MB
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=|(
3
-i)i|+i5(i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)為( 。
A、2-iB、2+i
C、4-iD、4+i

查看答案和解析>>

同步練習(xí)冊答案