(1)當(dāng)?shù)讛?shù)是9時(shí),求27的對(duì)數(shù).

(2)底數(shù)是多少時(shí),64的對(duì)數(shù)為3?

(3)當(dāng)?shù)讛?shù)是64時(shí),什么數(shù)的對(duì)數(shù)是-

思路解析:利用對(duì)數(shù)的定義及指數(shù)式與對(duì)數(shù)式互化解題.

解:(1)設(shè)底是9,27的對(duì)數(shù)為x,即x=log927,

所以9x=27,所以32x=33,所以2x=3,所以x=.

(2)設(shè)底數(shù)是x時(shí),64的對(duì)數(shù)為3.

即logx64=3,所以x3=64,所以x==4.

(3)設(shè)當(dāng)?shù)讛?shù)是64時(shí),x的對(duì)數(shù)是-,

即log64x=-,所以x=,所以x=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•雁江區(qū)一模)已知函數(shù)f(x)=ax2+ln(x+1).
(Ⅰ)當(dāng)a=-
1
4
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[0,+∞)時(shí),函數(shù)y=f(x)圖象上的點(diǎn)都在
x≥0
y-x≤0
所表示的平面區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍.
(Ⅲ)求證:(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]<e
(其中n∈N*,e是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+ln(x+1).
(1)當(dāng)a=-
1
4
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[0,+∞)時(shí),不等式f(x)≤x恒成立,求實(shí)數(shù)a的取值范圍.
(文)(Ⅲ)利用ln(x+1)≤x,求證:ln{(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]}<1
(其中n∈N*,e是自然對(duì)數(shù)的底數(shù)).
(Ⅲ)求證:(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]<e
(其中n∈N*,e是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+ln(x+1).
(1)當(dāng)a=-
1
4
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈[0,+∞)時(shí),不等式f(x)≤x恒成立,求實(shí)數(shù)a的取值范圍.
(3)利用ln(x+1)≤x,求證:ln{(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]}<1
(其中n∈N*,e是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+ln(x+1).
(Ⅰ)當(dāng)a=
1
4
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[0,+∞)時(shí),不等式f(x)≤x恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)求證:(1+
2
2×3
)×(1+
4
3×5
)×(1+
8
5×9
)…(1+
2n
(2n-1+1)(2n+1)
)<e
(其中,n∈N*,e是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案