【題目】正整數(shù) , 是等腰三角形的三邊長(zhǎng),并且,這樣的三角形有( )個(gè).

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】可以化為(a+b)(c+1)=24,其中a,b,c都是正整數(shù),并且其中兩個(gè)數(shù)相等,

a+b=A,c+1=CAC為大于2的正整數(shù),

那么24分解為大于等于2的兩個(gè)正整數(shù)的乘積有幾種組合2×12,3×8,4×6,6×4,3×8,2×12,

、A=2,C=12時(shí),c=11,a+b=2,無(wú)法得到滿足等腰三角形的整數(shù)解;

A=3,C=8時(shí),c=7,a+b=3,無(wú)法得到滿足等腰三角形的整數(shù)解;

A=4,C=6時(shí),c=5,a+b=4,無(wú)法得到滿足等腰三角形的整數(shù)解;

A=6,C=4時(shí),c=3,a+b=6,可以得到a=b=c=3,可以組成等腰三角形;

、A=8,C=3時(shí),c=2,a+b=8,可得a=b=4,c=2,可以組成等腰三角形,a=b=4是兩個(gè)腰;

、A=12,C=2時(shí),可得a=b=6,c=1,可以組成等腰三角形,a=b=6是兩個(gè)腰。

∴一共有3個(gè)這樣的三角形。

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在高中學(xué)習(xí)過(guò)程中,同學(xué)們經(jīng)常這樣說(shuō):“如果物理成績(jī)好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問(wèn)題.”某班針對(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線性相關(guān)關(guān)系的結(jié)論.現(xiàn)從該班隨機(jī)抽取5名學(xué)生在一次考試中的物理和數(shù)學(xué)成績(jī),如下表:

編號(hào)

成績(jī)

1

2

3

4

5

物理(

90

85

74

68

63

數(shù)學(xué)(

130

125

110

95

90

求數(shù)學(xué)成績(jī)關(guān)于物理成績(jī)的線性回歸方程精確到

若某位學(xué)生的物理成績(jī)?yōu)?0分,預(yù)測(cè)他的數(shù)學(xué)成績(jī);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)際奧委會(huì)將于2017年9月15日在秘魯利馬召開130次會(huì)議決定2024年第33屆奧運(yùn)會(huì)舉辦地。目前德國(guó)漢堡、美國(guó)波士頓等申辦城市因市民擔(dān)心賽事費(fèi)用超支而相繼退出。某機(jī)構(gòu)為調(diào)查我國(guó)公民對(duì)申辦奧運(yùn)會(huì)的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計(jì)如下:

(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)能否在犯錯(cuò)誤的概率不超過(guò)5%的前提下認(rèn)為不同年齡與支持申辦奧運(yùn)無(wú)關(guān)?

(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機(jī)抽取3人,求至多有1位教師的概率.

附: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為常數(shù),=2.71828……是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.

1)求的值;

2)求的單調(diào)區(qū)間;

3)設(shè),其中的導(dǎo)函數(shù).證明:對(duì)任意>0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,側(cè)棱垂直底面,,,是棱的中點(diǎn)

(Ⅰ)證明:平面平面

(Ⅱ)平面分此棱柱為兩部分,求這兩部分體積比

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】知函數(shù)

(1)討論函數(shù)單調(diào)性;

(2)當(dāng)時(shí),成立,求實(shí)數(shù)取值范圍;

(3)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=。

(1)求證:平面EBC⊥平面EBD;

(2)設(shè)M為線段EC上一點(diǎn),且3EM=EC,試問(wèn)在線段BC上是否存在一點(diǎn)T,使得MT∥平面BDE,若存在,試指出點(diǎn)T的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=4x2﹣4ax+a2﹣2a+2在區(qū)間[0,2]上有最小值3,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了解2017屆高三學(xué)生的性別和喜愛游泳是否有關(guān),對(duì)100名高三學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計(jì)

男生

10

女生

20

合計(jì)

已知在這100人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為

(Ⅰ)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;

(Ⅱ)判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案