【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且bsinA=acosB.

(1)求角B的大;

(2)若b=3,sinC=2sinA,求a,c的值.

【答案】(1)(2)

【解析】試題分析:(1)由正弦定理,可將已知等式bsinA=acosB化為:再注意到sinA0,從而可求得的值,再注意角B的范圍就可求出角B的大;(2)由已知sinC=2sinA及正弦定理可得到c=2a,又因為b=3,由余弦定理,結(jié)合(1)結(jié)果,可得到關(guān)于a的一個方程,解此方程可得到a的值,從而得到c的值.

試題解析:(1)bsinA=acosB,由正弦定理可得, 2

即得>0,所以, 4

. 5

(2)sinC=2sinA,由正弦定理得, 6

由余弦定理, 7

, 8

解得9

. 10

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知θ∈[0, ],直線xsinθ+ycosθ﹣1=0和圓C:(x﹣1)2+(y﹣cosθ)2= 相交所得的弦長為 ,則θ=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等比數(shù)列中,已知,且成等差數(shù)列.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究性學習小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

K日 日期期

1日

2日

3日

4日

5日

溫差x(℃)

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

(1)求這5天發(fā)芽數(shù)的中位數(shù);

(2)求這5天的平均發(fā)芽率;

(3)從3月1日至3月5日中任選2天,記前面一天發(fā)芽的種子數(shù)為m,后面一天發(fā)芽的種子數(shù)為n,用(m,n)的形式列出所有基本事件,并求滿足“”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,圓,圓心到拋物線準線的距離為3,點是拋物線在第一象限上的點,過點作圓的兩條切線,分別與軸交于兩點.

(1)求拋物線的方程;

(2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點處的切線斜率為1,求函數(shù)的單調(diào)區(qū)間;

(2)若時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分12分)已知,函數(shù)

)若,求曲線在點處的切線方程.

)若,求在閉區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合A={x|﹣1≤x≤2},B={x|x2﹣4x>0,x∈R},則A∩(RB)=(
A.[1,2]
B.[0,2]
C.[1,4]
D.[0,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5 kg,乙材料1 kg,用5個工時;生產(chǎn)一件產(chǎn)品B需要甲材料0.5 kg,乙材料0.3 kg,用3個工時,生產(chǎn)一件產(chǎn)品A的利潤為2 100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150 kg,乙材料90 kg,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為________________元.

查看答案和解析>>

同步練習冊答案