設函數(shù)
f(
x)=sin
+sin
(
ω>0)的最小正周期為π,則( )
A.f(x)在上單調遞減 | B.f(x)在上單調遞增 |
C.f(x)在上單調遞增 | D.f(x)在上單調遞減 |
依題意得
f(
x)=2sin
ωxcos
=-sin
ωx,
=π,所以
ω=2,
f(
x)=-sin 2
x,易知該函數(shù)在
上單調遞減
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
若
的最小值為
,其圖像相鄰最高點與最低點橫坐標之差為
,且圖像過點(0,1),則其解析式是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
(
)的最小正周期為
.
(1)求函數(shù)
的單調增區(qū)間;
(2)將函數(shù)
的圖象向左平移
個單位,再向上平移
個單位,得到函數(shù)
的圖象.若
在
上至少含有
個零點,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)f(x)=cosx·cos(x-
).
(1)求f
的值;
(2)求使f(x)<
成立的x的取值集合.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
)的周期為π,且圖象上一個最低點為M
.
(1)求f(x)的解析式;
(2)當x∈
時,求f(x)的最值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
f(
x)=4cos
x·sin
+
a的最大值為2.
(1)求
a的值及
f(
x)的最小正周期;
(2)求
f(
x)的單調遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知函數(shù)
,給出下列五個說法:
①
;②若
,則
;③
在區(qū)間
上單調遞增;④函數(shù)
的周期為
.⑤
的圖象關于點
成中心對稱.
其中正確說法的序號是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設函數(shù)f(x)=
x
3+
x
2,其中θ∈
,則導數(shù)f ′(1)的取值范圍是_______.
查看答案和解析>>