如圖,已知橢圓的右焦點(diǎn)為F,過(guò)F的直線(非x軸)交橢圓于M、N兩點(diǎn),右準(zhǔn)線交x軸于點(diǎn)K,左頂點(diǎn)為A.
(Ⅰ)求證:KF平分∠MKN;
(Ⅱ)直線AM、AN分別交準(zhǔn)線于點(diǎn)P、Q,
設(shè)直線MN的傾斜角為,試用表示
線段PQ的長(zhǎng)度|PQ|,并求|PQ|的最小值.
時(shí),
【解析】解:(Ⅰ)法一:作MM1⊥于M1,
NN1⊥于N1,則,
又由橢圓的第二定義有
∴∴∠KMM1=∠KNN1,
即∠MKF=∠NKF,
∴KF平分∠MKN
法二:設(shè)直線MN的方程為.
設(shè)M、N的坐標(biāo)分別為,
由
∴
設(shè)KM和KN的斜率分別為,顯然只需證即可.
∵ ∴
而
即 得證.
(Ⅱ)由A,M,P三點(diǎn)共線可求出P點(diǎn)的坐標(biāo)為
由A,N,Q三點(diǎn)共線可求出Q點(diǎn)坐標(biāo)為,
設(shè)直線MN的方程為.由
∴
則:
又直線MN的傾斜角為,則,∴
∴時(shí),
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
y2 |
a2 |
y2 |
b2 |
| ||
2 |
PA |
AB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:廣東省揭陽(yáng)市2007年高中畢業(yè)班第一次高考模擬考試題(文科) 題型:044
如圖,在直角坐標(biāo)系xOy中,已知橢圓的離心率e=,
左右兩個(gè)焦分別為F1、F2.過(guò)右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的一個(gè)頂點(diǎn)為B(0,-b),是否存在直線l:y=x+m,使點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)落在橢圓C上,若存在,求出直線l的方程,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:廣東省揭陽(yáng)市2007年高中畢業(yè)班第一次高考模擬考試題(理科) 題型:044
如圖,在直角坐標(biāo)系xOy中,已知橢圓的離心率e=,左右兩個(gè)焦分別為F1、F2.過(guò)右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足,()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓C上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過(guò)右焦點(diǎn)且與軸垂直的
直線與橢圓相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足,
()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過(guò)右焦點(diǎn)且與軸垂直的
直線與橢圓相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足,
()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com