精英家教網 > 高中數學 > 題目詳情

【題目】某廠生產產品x件的總成本C(x)=1000+x2(萬元),已知產品單價P(萬元)與產品件數x滿足:P2= ,生產100件這樣的產品單價為50萬元.
(1)設產量為x件時,總利潤為L(x)(萬元),求L(x)的解析式;
(2)產量x定為多少時總利潤L(x)(萬元)最大?并求最大值.

【答案】
(1)解:由產品單價P(萬元)與產品件數x滿足: ,

生產100件這樣的產品單價為50萬元,得 ,

∴k=250000

(x∈(0,+∞)且x∈N*


(2)解:由

令L'(x)=0即 ,

∴x=25

當x∈(0,25)時,L'(x)>0,L(x)單調遞增;

當x∈(25,+∞)時,L'(x)<0,L(x)單調遞減;

因此當x=25時,L(x)取得最大值,且最大值為L(25)=2500﹣1000﹣625=875(萬元)

故產量x定為25件時,總利潤L(x)(萬元)最大,最大值為875萬元


【解析】(1)根據題意可求出k=250000,進而得出總利潤為L(x)為總賣價減去總成本;(2)根據利潤表達式,求出導函數,利用導函數得出函數的極值,進而求出函數的最大值.
【考點精析】本題主要考查了利用導數研究函數的單調性和函數的最大(小)值與導數的相關知識點,需要掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減;求函數上的最大值與最小值的步驟:(1)求函數內的極值;(2)將函數的各極值與端點處的函數值,比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知向量 =(cosα﹣ ,﹣1), =(sinα,1), 為共線向量,且α∈[﹣ ,0].
(1)求sinα+cosα的值;
(2)求 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以邊長為的正三角形的頂點為坐標原點,另外兩個頂點在拋物線過拋物線的焦點的直線過交拋物線兩點.

1)求拋物線的方程;

2求證 為定值;

3)求線段的中點的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ex+aex , 若f′(x)≥2 恒成立,則a的取值范圍為(
A.[3,+∞)
B.(0,3]
C.[﹣3,0)
D.(﹣∞,﹣3]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了引導居民合理用電,國家決定實行合理的階梯電價,居民用電原則上以住宅為單位(一套住宅為一戶).

階梯級別

第一階梯

第二階梯

第三階梯

月用電范圍(度)

(0,210]

(210,400]

某市隨機抽取10戶同一個月的用電情況,得到統(tǒng)計表如下:

居民用電戶編號

1

2

3

4

5

6

7

8

9

10

用電量(度)

53

86

90

124

132

200

215

225

300

410

若規(guī)定第一階梯電價每度0.5元,第二階梯超出第一階梯的部分每度0.6元,第三階梯超出第二階梯的部分每度0.8元,試計算A居民用電戶用電410度時應電費多少元?

現要在這10戶家庭中任意選取3戶,求取到第二階梯電量的戶數的分布列與期望;

以表中抽到的10戶作為樣本估計全市的居民用電,現從全市中依次抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知過定點P(2,0)的直線l與曲線y= 相交于A,B兩點,O為坐標原點,當△AOB的面積取最大時,直線的傾斜角可以是:①30°;②45°;③60°;④120°⑤150°.其中正確答案的序號是 . (寫出所有正確答案的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個幾何體的三視圖如圖所示(單位:m),求該幾何體的體積和表面積.(V圓錐體= Sh,V圓柱體=Sh)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】不等式ax2+bx+c>0的解集為{x|x<1或x>3},則不等式cx2﹣bx+a<0的解集為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F是橢圓的焦點,直線AF的斜率為 ,O為坐標原點.
(1)求E的方程;
(2)設過點A的直線l與E相交于P,Q兩點,當△OPQ的面積最大時,求l的方程.

查看答案和解析>>

同步練習冊答案