定義在R上的奇函數(shù)f(x)滿足f(2-x)=f(x),當x∈[0,1]時,f(x)=
x
.又g(x)=cos
πx
2
,則集合{x|f(x)=g(x)}等于( 。
分析:利用條件判斷出函數(shù)f(x)的周期,然后利用兩個函數(shù)在同一坐標系下的圖象關系確定方程的解集.
解答:解:由f(2-x)=f(x),得函數(shù)f(x)圖象關于直線x=1對稱,
又函數(shù)f(x)是奇函數(shù),所以f(2-x)=f(x)=-f(x-2),所以f(x+4)=f(x),即函數(shù)f(x)的周期為4.
函數(shù)g(x)的周期也為4,
由作出兩個函數(shù)的圖象,在[-1,3]一個周期內,f(x)=g(x)的值有兩個.
因為f(
1
2
)=
1
2
=
2
2
,且g(
1
2
)=cos
π
4
=
2
2
,所以交點的橫坐標為
1
2
,同時
f(
5
2
)=f(2-
5
2
)=f(-
1
2
)=-f(
1
2
)=-
2
2
.且g(
5
2
)=cos
4
=-
2
2
,所以交點的橫坐標為
5
2

即在一個周期內方程的f(x)=g(x)的解為x=
1
2
5
2

故在整個定義域內有x=4m+
1
2
=2(2m)+
1
2
,或x=4m+
5
2
=2(2m)+2+
1
2
=2(2m+1)+
1
2
,
即x=2k+
1
2
,k∈Z.
故選B.
點評:本題主要考查函數(shù)性質的綜合應用,利用數(shù)形結合是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足f(2x)=-2f(x),f(-1)=
1
2
,則f(2)的值為(  )
A、-1B、-2C、2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的奇函數(shù)f(x)在(0,+∞)上是增函數(shù),又f(-3)=0,則不等式xf(x)<0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的奇函數(shù)f(x)在[0,+∞)是增函數(shù),判斷f(x)在(-∞,0)上的增減性,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足:當x>0時,f(x)=2010x+log2010x,則方程f(x)=0的實根的個數(shù)為
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x),當x≥0時,f(x)=x3+x2,則f(x)=
x3+x2    x≥0
 
x3-x2     x<0
x3+x2    x≥0
 
x3-x2     x<0

查看答案和解析>>

同步練習冊答案