已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)經(jīng)過點T(
2
,-
6
2
)
,其離心率為
1
2
,右頂點為A,右焦點為F(c,0),直線x=
a2
c
與x軸交于B,過點F的直線l與橢圓交于不同的兩點M、N,點P為點M關(guān)于直線x=
a2
c
的對稱點.
(1)求橢圓C的方程;
(2)求證:N、B、P三點共線;
(3)求△BNM的面積的最大值.
考點:直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)根據(jù)橢圓
x2
a2
+
y2
b2
=1
(a>b>0)經(jīng)過點T(
2
,-
6
2
)
,其離心率為
1
2
,建立方程組,求出a,b,即可求橢圓C的方程;
(2)分類討論,證明
BP
BN
共線,可得N、B、P三點共線;
(3)分類討論,表示出△BNM的面積,即可求△BNM的面積的最大值.
解答: (1)解:根據(jù)題意得
(
2
)
2
a2
+
(-
6
2
)
2
b2
=1
a2-b2
a
=
1
2
a2=4
b2=3
,
∴橢圓C的方程為
x2
4
+
y2
3
=1
;
(2)證明:設(shè)直線l:y=k(x-1),M(x1,y1),N(x2,y2),則
直線方程代入橢圓方程,消去y可得(3+4k2)x2-8k2x+4k2-12=0,
∴x1+x2=
8k2
3+4k2
,x1x2=
4k2-12
3+4k2
,
∵P(8-x1,y1),
BP
=(4-x1,y1),
BN
=(x2-4,y2),
∴(4-x1)y2)-(x2-4)y1=4k(x1+x2-2)-2kx1x2+k(x1+x2
=4k(
8k2
3+4k2
-2)-2k•
4k2-12
3+4k2
+k•
8k2
3+4k2
=0
當(dāng)l⊥x軸時,也滿足,
BP
,
BN
共線,
∴N、B、P三點共線;
(3)解:記d為B到l的距離,則d=
3|k|
1+k2
,
∴S=
1
2
d|MN|=
1
2
3|k|
1+k2
1+k2
(x1+x2)2-4x1x2
=
9
2
1-
8k2+9
16k4+24k2+9
9
2

當(dāng)l⊥x軸時,S=
9
2

∴△BMN的面積的最大值為
9
2
點評:本題考查橢圓的方程,考查直線與橢圓的位置關(guān)系,考查向量知識的運用,考查分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為梯形,AB∥CD,AD=CD=2AB=2,∠DAB=60°,PD⊥平面ABCD,M為PC的中點
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若PD=
1
2
AD,求二面角D-BM-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線 x2=y,直線L經(jīng)過點A(-1,2)但不經(jīng)過點B(1,1),與拋物線交于M,N兩點,點M的橫坐標(biāo)大于1,直線L的斜率為k,直線BN,BM的斜率分別為k1,k2
(1)當(dāng)AB垂直于直線L時,求 k1.k2的值.
(2)設(shè)△BAM和△BAN的面積分別為S1,S2,當(dāng)k≤1時,求
S1
S2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E為AB的中點.
(Ⅰ)證明:A1D⊥D1E; 
(Ⅱ)求二面角D-CE-D1的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=ax(ax-3a2-1)(a>0且a≠0)在區(qū)間[0,+∞)單調(diào)遞增,那么實數(shù)a的取值范圍是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為梯形,AB∥DC,∠ABC=90°,且PA=AB=BC=
1
2
CD,EB=
1
2
PE.
(1)求證:PD∥平面AEC.
(2)求二面角A-CE-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD為直角梯形,∠DAB=∠ABC=90°,PA⊥平面ABCD,PA=AB=BC=2,AD=1.
(Ⅰ)求證:BC⊥平面PAB;
(Ⅱ)求平面PAB與平面PCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,EA⊥平面ABCD,EA∥PD,AD=PD=2EA,F(xiàn),G,H分別為PB,EB,PC的中點.
(1)求證:FG∥平面PED;
(2)求平面FGH與平面PBC所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3x-
2
x
在[1,2]上的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案