18.已知函數(shù)f(x)=ax2+2ax+4(-3<a<0),其圖象上兩點的橫坐標為x1、x&2滿足x1<x2,且x1+x2=1+a,則由( 。
A.f(x1)<f(x2B.f(x1)=f(x2
C.f(x1)>f(x2D.f(x1)、f(x&2)的大小不確定

分析 運用作差法比較,將f(x1)-f(x2)化簡整理得到a(x1-x2)(x1+x2+2),再由條件即可判斷.

解答 解:∵函數(shù)f(x)=ax2+2ax+4,
∴f(x1)-f(x2)=ax12+2ax1+4-(ax22+2ax2+4)
=a(x12-x22)+2a(x1-x2
=a(x1-x2)(x1+x2+2)
∵x1+x2=1+a,
∴f(x1)-f(x2)=a(3+a)(x1-x2),
∵-3<a<0,x1<x2,
∴f(x1)-f(x2)>0,即f(x1)>f(x2).
故選:C.

點評 本題考查作差法比較函數(shù)值的大小,及基本的化簡運算的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)y=Asin(ωx+ϕ)其中$A>0,ω>0,|ϕ|<\frac{π}{2}$,若函數(shù)的最小正周期為π,最大值為2,且過(0,1)點,
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知橢圓$\frac{x^2}{36}+\frac{y^2}{49}=1$上的一點P到橢圓的一個焦點的距離為3,則P點到另一個焦點的距離( 。
A.3B.4C.9D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=x2-2,則不等式f(x)<x的解集為(1,+∞)∪(-1,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.圓心角為2弧度的扇形的周長為3,則此扇形的面積為$\frac{9}{16}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若實數(shù)x,y滿足xy=1,則x2+3y2的最小值為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設x>2,則$y=x+\frac{4}{x-2}$的最小值是6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若x∈(-∞,2),則$\frac{{5-4x+{x^2}}}{2-x}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列命題中正確命題的個數(shù)是( 。
(1)設f(x)=ax3+bx2+cx+d(a≠0),若f(x)存在極值,則一定既有極大值又有極小值;
(2)命題“若m=3,則橢圓$\frac{x^2}{4}+\frac{y^2}{m}$=1離心率為$\frac{1}{2}$”的逆命題;
(3)設z∈C,命題“若z為實數(shù),則z=$\overline{z}$”的否命題;
(4)設a,b∈R,命題“若ab=0,則復數(shù)z=a+bi為純虛數(shù)”的逆否命題.
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案