對于拋物線y
2=4x上任意一點Q,點P(a,0)滿足|PQ|≥|a|,則a的取值范圍是( )
A.(-∞,0) | B.(-∞,2] | C.[0,2] | D.(0,2) |
設點Q的坐標為(
,y
0),由|PQ|≥|a|,得
+(
-a)
2≥a
2,整理得
(
+16-8a)≥0,∵
≥0,
∴
+16-8a≥0,即a≤2+
恒成立.而2+
的最小值為2,所以a≤2.選B.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知點
,直線
,動點P到點F的距離與到直線
的距離相等.
(1)求動點P的軌跡C的方程;(2)直線
與曲線C交于A,B兩點,若曲線C上存在點D使得四邊形FABD為平行四邊形,求b的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知頂點在坐標原點,焦點在x軸正半軸的拋物線上有一點A(
,m),A點到拋物線焦點的距離為1.
(1)求該拋物線的方程;
(2)設M(x
0,y
0)為拋物線上的一個定點,過M作拋物線的兩條互相垂直的弦MP,MQ,求證:PQ恒過定點(x
0+2,-y
0).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知數(shù)列{a
n}的通項公式為
an=(n∈N*),其前n項和
=,則雙曲線
-=1的漸近線方程為( 。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知點C(1,0),點A、B是⊙O:x
2+y
2=9上任意兩個不同的點,且滿足
·
=0,設P為弦AB的中點.
(1)求點P的軌跡T的方程;
(2)試探究在軌跡T上是否存在這樣的點:它到直線x=-1的距離恰好等于到點C的距離?若存在,求出這樣的點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為(
,0).
(1)求雙曲線C的方程;
(2)若直線l:y=kx+
與雙曲線C恒有兩個不同的交點A和B,且
·
>2(其中O為原點),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在平面直角坐標系中,
分別是
軸和
軸上的動點,若以
為直徑的圓
與直線
相切,則圓
面積的最小值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C
1和拋物線C
2有公共焦點F(1,0),C
1的中心和C
2的頂點都在坐標原點,過點M(4,0)的直線l與拋物線C
2分別相交于A ,B兩點.
(1)如圖所示,若
,求直線l的方程;
(2)若坐標原點O關于直線l的對稱點P在拋物線C
2上,直線l與橢圓C
1有公共點,求橢圓C
1的長軸長的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
圓錐曲線
(t為參數(shù))的焦點坐標是
.
查看答案和解析>>