(本題滿分14分)
已知橢圓的離心率為,直線過點,且與橢圓相切于點.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過點的直線與橢圓相交于不同的兩點、,使得
?若存在,試求出直線的方程;若不存在,請說明理由.
解: (Ⅰ)由題得過兩點直線的方程為.………… 1分
因為,所以.
設(shè)橢圓方程為,
消去得,.
又因為直線與橢圓相切,所以,解得.
所以橢圓方程為.    ……………………………………………… 5分
(Ⅱ)易知直線的斜率存在,設(shè)直線的方程為,…………………… 6分
消去,整理得. ………… 7分
由題意知
解得.  ……………………………………………………………… 8分
設(shè),,則.     …… 9分
又直線與橢圓相切,
解得,所以. ……………………………10分
. 所以.






所以,解得.經(jīng)檢驗成立.  …………………… 13分
所以直線的方程為.  …………………………………… 14分
 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P是橢圓上的一個動點,且P與橢圓長軸兩個頂點連線的斜率之積為,則橢圓的離心率為( )
A. B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點且與有相同漸近線的雙曲線方程是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的焦點為在橢圓上,則橢圓的方程為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

連接橢圓的一個焦點和一個頂點得到的直線方程為,則該橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)橢圓的兩個焦點分別為F1(0,-2),F(xiàn)2(0,2),離心率e =。(Ⅰ)求橢圓方程;(Ⅱ)一條不與坐標(biāo)軸平行的直線l與橢圓交于不同的兩點M、N,且線段MN中點的橫坐標(biāo)為-,求直線l傾斜角的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的方程為,過橢圓的右焦點且與x軸垂直的直線與橢圓交于P、Q兩點,橢圓的右準(zhǔn)線與x軸交于點M,若為正三角形,則橢圓的離心率等于  ▲   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,把橢圓的長軸分成等分,過每個分點作軸的垂線交橢圓的上半部分于八個點,是橢圓的左焦點,則
         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是橢圓上的動點,為其左、右焦點,則的取值范圍是  。

查看答案和解析>>

同步練習(xí)冊答案