【題目】已知拋物線C:y2=2px(p>0)的焦點為F并且經(jīng)過點A(1,﹣2).

(1)求拋物線C的方程;

(2)過F作傾斜角為45°的直線l,交拋物線C于M,N兩點,O為坐標原點,求OMN的面積

【答案】(1)y2=4x(2)

【解析】

試題分析:(1)把點A(1,-2)代入拋物線C:y2=2px(p>0),解得p即可得出;(2F10).設M,N.直線l的方程為:y=x-1.與拋物線方程聯(lián)立可得根與系數(shù)的關系,利用弦長公式可得.利用點到直線的距離公式可得:原點O到直線MN的距離d.利用OMN的面積即可得出

試題解析:(1)把點A(1,﹣2)代入拋物線C:y2=2px(p>0),可得(﹣2)2=2p×1,解得p=2.

拋物線C的方程為:y2=4x.

(2)F(1,0).設M(x1,y1),N(x2,y2).

直線l的方程為:y=x﹣1.聯(lián)立,化為x2﹣6x+1=0,x1+x2=6,x1x2=1.

|MN|===8.原點O到直線MN的距離d=∴△OMN的面積S===

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面是矩形,,,且.

(1)求證:平面平面

(2)設的中點,判斷并證明在線段上是否存在點,使平面,若存在,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位有、、三個工作點,需要建立一個公共無線網(wǎng)絡發(fā)射點,使得發(fā)射點到三個工作點的距離相等.已知這三個工作點之間的距離分別為,,.假定、、、四點在同一平面內(nèi).

)求的大;

)求點到直線的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其中為實數(shù)

1是否存在,使得?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由;

2若集合中恰有5個元素,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)個紅包,每個紅包金額為元,已知在每輪游戲中所產(chǎn)生的個紅包金額的頻率分布直方圖如圖所示

1的值,并根據(jù)頻率分布直方圖,估計紅包金額的眾數(shù);

2以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個紅包,其中金額在的紅包個數(shù)為,求的分布列和期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《算法統(tǒng)宗》是我國古代數(shù)學名著.在這部著作中,許多數(shù)學問題都是以歌訣形式呈現(xiàn)的,“竹筒容米”就是其中一首:家有八節(jié)竹一莖,為因盛米不均平;下頭三節(jié)三生九,上梢三節(jié)貯三升;唯有中間二節(jié)竹,要將米數(shù)次第盛;若是先生能算法,也教算得到天明!大意是:用一根8節(jié)長的竹子盛米,每節(jié)竹筒盛米的容積是不均勻的,下端3節(jié)可盛米3.9升,上端3節(jié)可盛米3升.要按依次盛米容積相差同一數(shù)量的方式盛米,中間兩節(jié)可盛米多少升?由以上條件,計算出這根八節(jié)竹筒的容積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班倡議假期每位學生至少閱讀一本名著,為了解學生的閱讀情況,對該班所有學生進行了調(diào)查調(diào)查結(jié)果如下表:

閱讀名著的本數(shù)

1

2

3

4

5

男生人數(shù)

3

1

2

1

3

女生人數(shù)

1

3

3

1

2

1試根據(jù)上述數(shù)據(jù),求這個班級女生閱讀名著的平均本數(shù);

2若從閱讀本名著的學生中任選人交流讀書心得,求選到男生和女生各人的概率;

3試比較該班男生閱讀名著本數(shù)的方差與女生閱讀名著本數(shù)的方差的大小只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是定義在上的函數(shù),如果存在點,對函數(shù)的圖象上任意點,關于點的對稱點也在函數(shù)的圖象上,則稱函數(shù)關于點對稱,稱為函數(shù)的一個對稱點,對于定義在上的函數(shù),可以證明點圖象的一個對稱點的充要條件是,

1求函數(shù)圖象的一個對稱點;

2函數(shù)的圖象是否有對稱點?若存在則求之,否則說明理由;

3函數(shù)的圖象是否有對稱點?若存在則求之,否則說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,貨輪在海上以35n mile/h的速度沿方位角(從正北方向順時針轉(zhuǎn)到目標方向線的水平角)為的方向航行.為了確定船位,在B點處觀測到燈塔A的方位角為.半小時后,貨輪到達C點處,觀測到燈塔A的方位角為.求此時貨輪與燈塔之間的距離.

查看答案和解析>>

同步練習冊答案