8.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率e=$\frac{1}{2}$,過(guò)F2作x軸垂直的直線交橢圓C于A、B兩點(diǎn),△F1AB的面積為3,拋物線E:y2=2px(p>0)以橢圓C的右焦點(diǎn)F2為焦點(diǎn).
(Ⅰ)求拋物線E的方程;
(Ⅱ)如圖,點(diǎn)$P({-\frac{P}{2},t})({t≠0})$為拋物線E的準(zhǔn)線上一點(diǎn),過(guò)點(diǎn)P作y軸的垂線交拋物線于點(diǎn)M,連接PO并延長(zhǎng)交拋物線于點(diǎn)N,求證:直線MN過(guò)定點(diǎn).

分析 (Ⅰ)設(shè)F2(c,0),由橢圓離心率及隱含條件把橢圓方程用含有c的式子表示,求出A的縱坐標(biāo),代入三角形面積公式求得c,則拋物線方程可求;
(Ⅱ)由(Ⅰ)可得M坐標(biāo),寫出直線PO的方程,與拋物線方程聯(lián)立可得N的坐標(biāo),當(dāng)t2≠4時(shí),寫出MN所在直線方程,化簡(jiǎn)后說(shuō)明直線MN過(guò)定點(diǎn)(1,0),當(dāng)t2=4時(shí),直線MN的方稱為:x=1,此時(shí)仍過(guò)點(diǎn)(1,0).

解答 (Ⅰ)解:設(shè)F2(c,0)(c>0),由$e=\frac{1}{2}$,有$a=2c,b=\sqrt{3}c$,
∴橢圓C的方程為:$\frac{x^2}{{4{c^2}}}+\frac{y^2}{{3{c^2}}}=1$,
令x=c,代入C的方程有:$|{y_A}|=\frac{3c}{2}$,
∴${S_{△{F_1}AB}}=\frac{1}{2}×2c×2|{y_A}|=3{c^2}=3$,
∴c=1,故$\frac{p}{2}=c=1$,即p=2.
∴拋物線E的方稱為:y2=4x;
(Ⅱ)證明:由(Ⅰ)知:P(-1,t)(t≠0),則$M({\frac{t^2}{4},t})$,
直線PO的方程為y=-tx,代入拋物線E的方程有:$N({\frac{4}{t^2},-\frac{4}{t}})$,
當(dāng)t2≠4時(shí),${k_{MN}}=\frac{{t+\frac{4}{t}}}{{\frac{t^2}{4}-\frac{4}{t^2}}}=\frac{4t}{{{t^2}-4}}$,
∴直線MN的方程為:$y-t=\frac{4t}{{{t^2}-4}}({x-\frac{t^2}{4}})$,即$y=\frac{4t}{{{t^2}-4}}({x-1})$,
∴此時(shí)直線MN過(guò)定點(diǎn)(1,0),
當(dāng)t2=4時(shí),直線MN的方稱為:x=1,此時(shí)仍過(guò)點(diǎn)(1,0).
∴直線MN過(guò)定點(diǎn)(1,0).

點(diǎn)評(píng) 本題考查橢圓與拋物線的簡(jiǎn)單性質(zhì),考查了橢圓與拋物線故選的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=2ax2+(a+4)x+lnx.
(1)若f(x)在x=$\frac{1}{4}$處的切線與直線4x+y=0平行,求a的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,已知四棱錐S-ABCD中,SA⊥平面ABCD,∠ABC=∠BCD=90°,且SA=AB=BC=2CD,E是邊SB的中點(diǎn).
(1)求證:CE∥平面SAD;
(2)取BC中點(diǎn)M,求證平面SAC⊥平面SMD;
(3)求三棱錐S-ECD與四棱錐E-ABCD的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( 。
A.y=$\frac{1}{x}$B.y=-x2+1C.y=-e-x-exD.y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,點(diǎn)F、A、B分別為E的左焦點(diǎn)、右頂點(diǎn),上頂點(diǎn),|AF|=$\sqrt{2}$+1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過(guò)原點(diǎn)O做斜率為k(k>0)的直線,交E于C,D兩點(diǎn),求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)集合M={x|1<x<5},N={0,2,3,5},則M∩N=( 。
A.{x|2<x<4}B.{0,2,3}C.{2,3}D.{x|2<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)min$\left\{{x,y}\right\}=\left\{{\begin{array}{l}{y,x≥y}\\{x,x<y}\end{array}}$,若定義域?yàn)镽的函數(shù)f(x),g(x)滿足f(x)+g(x)=$\frac{2x}{{{x^2}+1}}$,則min{f(x),g(x)}的最大值為( 。
A.$\frac{1}{4}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=lnx+ax2+1.
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的極值;
(2)當(dāng)a>0時(shí),證明:存在正實(shí)數(shù)λ,使得|${\frac{1-x}{f(x)-lnx}}$|≤λ恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知集合{1,2}⊆A⊆{1,2,3,4,5},則滿足條件的集合A的個(gè)數(shù)是( 。
A.8B.7C.4D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案