【題目】下列從總體中抽得的樣本是否為簡單隨機樣本?

1)總體編號為1~75.0~99中產(chǎn)生隨機整數(shù)r..則舍棄,重新抽取.

2)總體編號為1~75.0~99中產(chǎn)生隨機整數(shù)r,r除以75的余數(shù)作為抽中的編號,若余數(shù)為0.則抽中75.

3)總體編號為6001~6876.1~876范圍內產(chǎn)生一個隨機整數(shù)r,把r+6000作為抽中的編號.

【答案】1)不是簡單隨機樣本;(2)不是簡單隨機樣本;(3)是簡單隨機樣本.

【解析】

根據(jù)抽中的可能性是否相等依次判斷每個選項得到答案.

1)總體編號為1~75.0~99中產(chǎn)生隨機整數(shù)r..則舍棄,重新抽取.

只有編號為1~75可能被抽中,故不是等可能性的,不是簡單隨機抽樣;

2)總體編號為1~75.0~99中產(chǎn)生隨機整數(shù)r,r除以75的余數(shù)作為抽中的編號,若余數(shù)為0.則抽中75.

1~24,75號與25~74號抽中的可能性不同,故不是簡單隨機抽樣;

3)總體編號為6001~6876.1~876范圍內產(chǎn)生一個隨機整數(shù)r,把r+6000作為抽中的編號.

每個編號抽中的可能性相同,是簡單隨機抽樣;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2019年,隨著中國第一款5G手機投入市場,5G技術已經(jīng)進入高速發(fā)展階段.已知某5G手機生產(chǎn)廠家通過數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機萬臺,其總成本為,其中固定成本為800萬元,并且每生產(chǎn)1萬臺的生產(chǎn)成本為1000萬元(總成本=固定成本+生產(chǎn)成本),銷售收入萬元滿足

1)將利潤表示為產(chǎn)量萬臺的函數(shù);

2)當產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 的內角 的對邊分別為 已知

(1)求角 ;

(2)若 ,求 的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)判斷函數(shù)的奇偶性,并說明理由;

(2)設,問函數(shù)的圖像是否關于某直線成軸對稱圖形,如果是,求出的值,如果不是,請說明理由;(可利用真命題:“函數(shù)的圖像關于某直線成軸對稱圖形”的充要條件為“函數(shù)是偶函數(shù)”)

(3)設,函數(shù),若函數(shù)的圖像有且只有一個公共點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉化,相對統(tǒng)一的和諧美,定義:能夠將圓的周長和面積同時等分成兩個部分的函數(shù)稱為圓的一個太極函數(shù),則下列有關說法中:

①對于圓的所有非常數(shù)函數(shù)的太極函數(shù)中,都不能為偶函數(shù);

②函數(shù)是圓的一個太極函數(shù);

③直線所對應的函數(shù)一定是圓的太極函數(shù);

④若函數(shù)是圓的太極函數(shù),則

所有正確的是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學舉行一次“環(huán)保知識競賽”,全校學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數(shù),滿分為分)作為樣本進行統(tǒng)計,請根據(jù)下面尚未完成并有局部污損的樣本的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:

)寫出, , , 的值.

)在選取的樣本中,從競賽成績是分以上(含分)的同學中隨機抽取名同學到廣場參加環(huán)保知識的志愿宣傳活動,求所抽取的名同學來自同一組的概率.

)在()的條件下,設表示所抽取的名同學中來自第組的人數(shù),求的分布列及其數(shù)學期望.

組別

分組

頻數(shù)

頻率

合計

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1,曲線C2

1)指出C1C2各是什么曲線,并說明C1C2公共點的個數(shù);

2)若把C1C2上各點的縱坐標都壓縮為原來的一半,分別得到曲線,.寫出,的參數(shù)方程.公共點的個數(shù)和C1C2公共點的個數(shù)是否相同?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)

(1)當時,求函數(shù)上的最值;

(2)若函數(shù)上單調遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調查機構借助網(wǎng)絡進行了問卷調查,并從參與調查的網(wǎng)友中隨機抽取了200人進行抽樣分析,得到下表(單位:人):

經(jīng)常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?

(2)現(xiàn)從所有抽取的30歲以上的網(wǎng)民中利用分層抽樣抽取5人,

求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

從這5人中,在隨機選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習冊答案