【題目】如圖,在平面直角坐標系中,已知橢圓的焦距為2,且經(jīng)過點,過左焦點且不與軸重合的直線與橢圓交于點,兩點.

1)求橢圓的方程;

2)若直線,,的斜率之和為0,求直線的方程;

3)設弦的垂直平分線分別與直線,橢圓的右準線交于點,,求的最小值.

【答案】123

【解析】

1)根據(jù)已知求出的值,即得橢圓的的方程;(2)設直線,,聯(lián)立直線和橢圓的方程得到韋達定理,根據(jù)直線,的斜率之和為0,求出,即得直線的方程;(3)直線的斜率不存在時,;直線的斜率存在時,求出.即得解.

1)因為橢圓的焦距為2,所以橢圓的焦點為,

所以點到焦點,的距離分別為,

,得

所以,橢圓的方程為

2)依題意,左焦點,設直線,,,

聯(lián)立方程組整理得

所以,

因為直線,的斜率之和為0,所以

,整理得,

,解得

所以直線的方程為

3)若直線的斜率不存在,;

若直線的斜率存在,由(2)可得

,

,直線的斜率為,

所以

,

,則,

時,,

所以

顯然,,

所以的最小值為2

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在中, 分別為, 的中點,的中點,,.沿折起到的位置,使得平面平面,如圖2.

1)求證:;

2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,曲線:,為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線.

(1)說明是哪一種曲線,并將的方程化為極坐標方程;

(2)若直線的方程為,設的交點為,的交點為,,若的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知方程k在(0,+∞)上有兩個不同的解α,β(αβ),則下列的四個命題正確的是( )

A. sin 2α=2αcos2α B. cos 2α=2αsin2α

C. sin 2β=-2βsin2β D. cos 2β=-2βsin2β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某機構為了了解不同年齡的人對一款智能家電的評價,隨機選取了50名購買該家電的消費者,讓他們根據(jù)實際使用體驗進行評分.

(Ⅰ)設消費者的年齡為,對該款智能家電的評分為.若根據(jù)統(tǒng)計數(shù)據(jù),用最小二乘法得到關于的線性回歸方程為,且年齡的方差為,評分的方差為.求的相關系數(shù),并據(jù)此判斷對該款智能家電的評分與年齡的相關性強弱.

(Ⅱ)按照一定的標準,將50名消費者的年齡劃分為“青年”和“中老年”,評分劃分為“好評”和“差評”,整理得到如下數(shù)據(jù),請判斷是否有的把握認為對該智能家電的評價與年齡有關.

好評

差評

青年

8

16

中老年

20

6

附:線性回歸直線的斜率;相關系數(shù),獨立性檢驗中的,其中.

臨界值表:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,為等邊三角形,,,,的中點.

1)求證:;

2)求直線與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“搜索指數(shù)”是網(wǎng)民通過搜索引擎,以每天搜索關鍵詞的次數(shù)為基礎所得到的統(tǒng)計指標.“搜索指數(shù)”越大,表示網(wǎng)民對該關鍵詞的搜索次數(shù)越多,對該關鍵詞相關的信息關注度也越高.下圖是2017年9月到2018年2月這半年中,某個關鍵詞的搜索指數(shù)變化的走勢圖.

根據(jù)該走勢圖,下列結(jié)論正確的是( )

A. 這半年中,網(wǎng)民對該關鍵詞相關的信息關注度呈周期性變化

B. 這半年中,網(wǎng)民對該關鍵詞相關的信息關注度不斷減弱

C. 從網(wǎng)民對該關鍵詞的搜索指數(shù)來看,去年10月份的方差小于11月份的方差

D. 從網(wǎng)民對該關鍵詞的搜索指數(shù)來看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示七面體中,平面,平面平面,四邊形是邊長為2的菱形,,M,N分別為的中點.

1)求證:平面;

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)若函數(shù)的圖象上存在關于原點對稱的點,求實數(shù)的取值范圍;

2)設,已知上存在兩個極值點,且,求證:(其中為自然對數(shù)的底數(shù)).

查看答案和解析>>

同步練習冊答案