【題目】已知二次函數(shù)滿(mǎn)足,且.
求函數(shù)的解析式;
求在區(qū)間上的最大值和最小值;
當(dāng)時(shí),恒成立,求a的取值范圍.
【答案】(1);(2)最大值為,最小值為;(3).
【解析】
根據(jù)題意,用待定系數(shù)法設(shè)二次函數(shù)的解析式為,由得,又由,則,即,解可得a、b的值,代入函數(shù)的解析式,即可得答案;根據(jù)題意,由二次函數(shù)的性質(zhì)分析可得答案;根據(jù)題意,當(dāng)時(shí),恒成立,即在上恒成立,由基本不等式的性質(zhì)分析可得,則有在上恒成立,解可得a的取值范圍,即可得答案.
根據(jù)題意,設(shè)二次函數(shù)的解析式為
由得,則;
又由,則.
即,
則有,解可得,,
故,
根據(jù)題意,由的結(jié)論,,
在上為減函數(shù),在上為增函數(shù),
又由,,則,
則在區(qū)間上的最大值為,最小值為;
根據(jù)題意,當(dāng)時(shí),恒成立,即在上恒成立,
即在上恒成立,
又由分析可得:,則有在上恒成立,
;
即a的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x+1|﹣2|x|.
(1)求不等式f(x)≤﹣6的解集;
(2)若存在實(shí)數(shù)x滿(mǎn)足f(x)=log2a,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在區(qū)間上的值域.
(1)求的值;
(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)有工人1000名,為了提高工人的生產(chǎn)技能,特組織工人參加培訓(xùn).其中250名工人參加過(guò)短期培訓(xùn)(稱(chēng)為類(lèi)工人),另外750名工人參加過(guò)長(zhǎng)期培訓(xùn)(稱(chēng)為類(lèi)工人).現(xiàn)從該工廠(chǎng)的工人中共抽查了100名工人作為樣本,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力是指工人一天加工的零件數(shù)),得到類(lèi)工人生產(chǎn)能力的莖葉圖(圖1),類(lèi)工人生產(chǎn)能力的頻率分布直方圖(圖2).
(1)在樣本中求類(lèi)工人生產(chǎn)能力的中位數(shù),并估計(jì)類(lèi)工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,現(xiàn)以樣本中頻率作為概率,從1000名工人中按分層抽樣共抽取名工人進(jìn)行調(diào)查,請(qǐng)估計(jì)這名工人中的各類(lèi)人數(shù),完成下面的列聯(lián)表.
若研究得到在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時(shí)間長(zhǎng)短有關(guān),則的最小值為多少?
參考數(shù)據(jù):
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=x2+(a+1)x+a2(a∈R),若f(x)能表示成一個(gè)奇函數(shù)g(x)和一個(gè)偶函數(shù)h(x)的和.
(1)求g(x)和h(x)的解析式;
(2)若f(x)和g(x)在區(qū)間(-∞,(a+1)2]上都是減函數(shù),求f(1)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= .
(1)求函數(shù)f(x)在[0,2]上得單調(diào)區(qū)間;
(2)當(dāng)m=0,k∈R時(shí),求函數(shù)g(x)=f(x)﹣kx2在R上零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2 sin(x+)。
(1)若點(diǎn)P(1,-)在角的終邊上,求:cos和f(-)的值;
(2)若x [, ],求f(x)的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列{an}滿(mǎn)足an+1+an=104n﹣1(n∈N*),數(shù)列{bn}的前n項(xiàng)和為Sn , 且bn=log2an .
(1)求bn , Sn;
(2)設(shè)cn= ,證明: + +…+ < Sn+1(n∈N*).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com