解:(1)
,∴
.
當(dāng)x∈(0,1)時(shí),∴f(x)在(0,1]上遞減;
當(dāng)x∈(1,+∞)時(shí),∴f(x)在[1,+∞)上遞增.
∴當(dāng)m≥1時(shí),f(x)在[m,m+1]上遞增,
;
當(dāng)0<m<1時(shí),f(x)在[m,1]上遞減,在[1,m+1]上遞增,f(x)
min=f(1)=e.
∴
.
(2)?x>0,e
x>-x
2+λx-1恒成立,即
恒成立.
由(1)可知,
,當(dāng)且僅當(dāng)x=1時(shí)取等號(hào),
又
,當(dāng)且僅當(dāng)x=1時(shí)取等號(hào),
∴當(dāng)且僅當(dāng)x=1時(shí),有
.
∴λ<e+2.
分析:(1)先求導(dǎo)函數(shù),根據(jù)函數(shù)的定義域,可知當(dāng)x∈(0,1)時(shí),f(x)在(0,1]上遞減;當(dāng)x∈(1,+∞)時(shí),f(x)在[1,+∞)上遞增.從而可確定函數(shù)f(x)在[m,m+1](m>0)上的最小值;
(2)利用分離參數(shù)法,問題可轉(zhuǎn)化為?x>0,
恒成立.由于
,當(dāng)且僅當(dāng)x=1時(shí)取等號(hào),
,當(dāng)且僅當(dāng)x=1時(shí)取等號(hào),從而可知當(dāng)x=1時(shí),有
,故可求實(shí)數(shù)λ的取值范圍.
點(diǎn)評(píng):本題以函數(shù)為載體,考查利用導(dǎo)數(shù)求單調(diào)性,考查函數(shù)的最值,考查基本不等式的運(yùn)用,考查恒成立問題的處理.