【題目】已知函數(shù)f(x)=x+ ,且函數(shù)y=f(x)的圖像經(jīng)過點(1,2).
(1)求m的值;
(2)判斷函數(shù)的奇偶性并加以證明;
(3)證明:函數(shù)f(x)在(1,+∞)上是增函數(shù).

【答案】
(1)解:由函數(shù)f(x)=x+ 的圖像過點(1,2),

得2=1+

解得m=1


(2)解:由(1)知,f(x)=x+

定義域為(﹣∞,0)∪(0,+∞)具有對稱性,

且f(﹣x)=﹣x+ =﹣(x+ )=﹣f(x),

所以f(x)為奇函數(shù)


(3)證明:設(shè)1<x1<x2,則

f(x1)﹣f(x2)= = ,

∵x1﹣x2<0,x1x2﹣1>0,x1x2>0,

∴f(x1)<f(x2),

∴函數(shù)y=f(x)在(1,+∞)上為增函數(shù)


【解析】(1)由函數(shù)f(x)圖像過點(1,2),代入解析式求出m的值;(2)利用奇偶性的定義判斷f(x)為定義域上的奇函數(shù);(3)利用單調(diào)性的定義可證明f(x)在(1,+∞)上為增函數(shù).
【考點精析】認真審題,首先需要了解函數(shù)單調(diào)性的判斷方法(單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較),還要掌握函數(shù)的奇偶性(偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱)的相關(guān)知識才是答題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

⑴求函數(shù)的單調(diào)區(qū)間;

⑵如果對于任意的, 恒成立,求實數(shù)的取值范圍;

⑶設(shè)函數(shù), .過點作函數(shù)的圖象

的所有切線,令各切點的橫坐標構(gòu)成數(shù)列,求數(shù)列的所有項之和的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)當a<0時,判斷f(x)在(0,+∞)上的單調(diào)性;
(2)當a=﹣4時,對任意的實數(shù)x1 , x2∈[1,2],都有f(x1)≤g(x2),求實數(shù)m的取值范圍;
(3)當 , ,y=|F(x)|在(0,1)上單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率,且過點

(1)求橢圓的方程;

(2)如圖,過橢圓的右焦點作兩條相互垂直的直線交橢圓分別于,且滿足, ,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如甲圖所示,在矩形中, , 的中點,將沿折起到位置,使平面平面,得到乙圖所示的四棱錐

求證: 平面;

求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)全集U={(x,y)|x,y∈R},集合M={(x,y)| =1},N={(x,y)|y=x+1},則N∩(UM)等于(
A.
B.{(2,3)}
C.(2,3)
D.{(x,y)|y=x+1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)性;

)若函數(shù)有兩個極值點,,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學在研究性學習中,收集到某制藥廠今年前5個月甲膠囊生產(chǎn)產(chǎn)量(單位:萬盒)的數(shù)據(jù)如下表所示:

(月份)

1

2

3

4

5

(萬盒)

1

4

5

6

6

(1)該同學為了求出關(guān)于的線性回歸方程,根據(jù)表中數(shù)據(jù)已經(jīng)正確計算出,試求出的值,并估計該廠6月份生產(chǎn)的甲膠囊產(chǎn)量數(shù);

(2)若某藥店現(xiàn)有該制藥廠今年二月份生產(chǎn)的甲膠囊4盒和三月份生產(chǎn)的甲膠囊5盒,小紅同學從中隨機購買了3盒甲膠囊.后經(jīng)了解發(fā)現(xiàn)該制藥廠今年二月份生產(chǎn)的所有甲膠囊均存在質(zhì)量問題.記小紅同學所購買的3盒甲膠囊中存在質(zhì)量問題的盒數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩種不同規(guī)格的產(chǎn)品,其質(zhì)量按測試指標分數(shù)進行劃分,其中分數(shù)不小于82分的為合格品,否則為次品.現(xiàn)隨機抽取兩種產(chǎn)品各100件進行檢測,其結(jié)果如下:

測試指標分數(shù)

甲產(chǎn)品

8

12

40

32

8

乙產(chǎn)品

7

18

40

29

6

(1)根據(jù)以上數(shù)據(jù),完成下面的 列聯(lián)表,并判斷是否有 的有把握認為兩種產(chǎn)品的質(zhì)量有明顯差異?

甲產(chǎn)品

乙產(chǎn)品

合計

合格品

次品

合計

(2)已知生產(chǎn)1件甲產(chǎn)品,若為合格品,則可盈利40元,若為次品,則虧損5元;生產(chǎn)1件乙產(chǎn)品,若為合格品,則可盈利50元,若為次品,則虧損10元.記 為生產(chǎn)1件甲產(chǎn)品和1件乙產(chǎn)品所得的總利潤,求隨機變量的分布列和數(shù)學期望(將產(chǎn)品的合格率作為抽檢一件這種產(chǎn)品為合格品的概率).

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.702

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案