精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)(注意:在試題卷上作答無效)

在四棱錐中,側面底面,,底面是直角梯形,,,.

(Ⅰ)求證:平面;

(Ⅱ)設為側棱上一點,

試確定的值,使得二面角.

 

【答案】

解法一:

(Ⅰ)平面底面,所以平面,………1分     

   所以,  .……2分

如圖,以為原點建立空間直角坐標系.

………3分

,,

所以,,……………4分

又由平面,可得,所以平面.……………6分

(Ⅱ)平面的法向量為,…………………………………………7分

,

所以, ………………………………………………………………8分

設平面的法向量為,,

,,得

所以,,………………………………………………….……9分

所以,………………………………………………………….…10分

所以,……………………...……11分

注意到,得.   …………………………….………………12分   

 

法二:(Ⅰ)∵面PCD⊥底面ABCD,面PCD∩底面ABCD=CD,PDPCD,且PDCD

PDABCD,………1分  又BCABCD,∴BCPD    ①…. .…..……2分

CD中點E,連結BE,則BECD,且BE=1

在Rt△ABD中,,在Rt△BCE中,BC=. .……………………...……4分

, ∴BCBD   ②………………...……5

由①、②且PDBD=D

BCPBD.            ……….………………………………………….…...……6分

(Ⅱ)過QQF//BCPBF,過FFGBDG,連結 GQ.

BCPBD,QF//BC

QFPBD,∴FGQG在面PBD上的射影,

又∵BDFG  ∴BDQG

∴∠FGQ為二面角Q-BD-P的平面角;由題意,∠FGQ=45°. …………….…...……8分

PQ=x,易知

FQ//BC,∴

FG//PD………………..…...……10

在Rt△FGQ中,∠FGQ=45°

FQ=FG,即   ……..….........……11

    ∴      ∴……..…............……12

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文) (本小題滿分12分已知函數y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數的值域和最小正周期;
(2)求函數的遞減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)已知函數,且。①求的最大值及最小值;②求的在定義域上的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數分別占總數的、、.現有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案