【題目】已知函數(shù).

(1)討論函數(shù)的零點(diǎn)個(gè)數(shù);

(2)已知,證明:當(dāng)時(shí),.

【答案】(1)當(dāng)時(shí),個(gè)零點(diǎn);當(dāng)時(shí),個(gè)零點(diǎn);當(dāng)時(shí),個(gè)零點(diǎn).(2)見(jiàn)解析

【解析】分析:(1)先換元,令得到,轉(zhuǎn)化成求函數(shù)的零點(diǎn)個(gè)數(shù),再對(duì)a分類(lèi)討論求函數(shù)的零點(diǎn)個(gè)數(shù). (2)先轉(zhuǎn)化成只需證.再轉(zhuǎn)化成左邊函數(shù)的最大值,小于右邊函數(shù)的最小值.

詳解:(1)..

,則函數(shù)的零點(diǎn)個(gè)數(shù)情況一致. .

1)時(shí),上單調(diào)遞增.

個(gè)零點(diǎn).

2)時(shí),上單調(diào)遞增,上單調(diào)遞減.

.

時(shí),,無(wú)零點(diǎn).

時(shí),個(gè)零點(diǎn).

時(shí),,又.

,

,

,

上單調(diào)遞增,兩個(gè)零點(diǎn).

綜上:當(dāng)時(shí),個(gè)零點(diǎn);當(dāng)時(shí),個(gè)零點(diǎn);當(dāng)時(shí),個(gè)零點(diǎn).

(2)要證只需證.

,只需證:.

上單調(diào)遞增,在上單調(diào)遞減,.

上單調(diào)遞增,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)、分別是橢圓的左、右焦點(diǎn).若是該橢圓上的一個(gè)動(dòng)點(diǎn),的最大值為1.

(1)求橢圓的方程;

(2)設(shè)直線(xiàn)與橢圓交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為(不重合),則直線(xiàn)軸是否交于一個(gè)定點(diǎn)若是,請(qǐng)寫(xiě)出定點(diǎn)坐標(biāo),并證明你的結(jié)論若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)上有定義,要使函數(shù)有定義,則a的取值范圍為

A.;B.C.;D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).

1)已知,,利用上述性質(zhì),求的單調(diào)區(qū)間和值域;

2)對(duì)于(1)中的函數(shù)和函數(shù),若對(duì)任意的,總存在使得成立,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)的三邊,求證:方程有公共根的充要條件是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)為,點(diǎn)在拋物線(xiàn)上,過(guò)焦點(diǎn)的直線(xiàn)交拋物線(xiàn)兩點(diǎn).

(1)求拋物線(xiàn)的方程以及的值;

(2)記拋物線(xiàn)的準(zhǔn)線(xiàn)與軸交于點(diǎn),若,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,橢圓C離心率為,其短軸長(zhǎng)為2.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)如圖,A為橢圓C的左頂點(diǎn),P,Q為橢圓C上兩動(dòng)點(diǎn),直線(xiàn)POAQE,直線(xiàn)QOAPD,直線(xiàn)OP與直線(xiàn)OQ的斜率分別為,,且, ,為非零實(shí)數(shù)),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)營(yíng)的某種消費(fèi)品的進(jìn)價(jià)為每件14元,月銷(xiāo)售量(百件)與每件的銷(xiāo)售價(jià)格(元)的關(guān)系如圖所示,每月各種開(kāi)支2 000元.

(1)寫(xiě)出月銷(xiāo)售量(百件)關(guān)于每件的銷(xiāo)售價(jià)格(元)的函數(shù)關(guān)系式.

(2)寫(xiě)出月利潤(rùn)(元)與每件的銷(xiāo)售價(jià)格(元)的函數(shù)關(guān)系式.

(3)當(dāng)該消費(fèi)品每件的銷(xiāo)售價(jià)格為多少元時(shí),月利潤(rùn)最大?并求出最大月利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 = (1,2sinθ),= (sin(θ+),1),θR。

(1) ,求 tanθ的值;

(2) ,且 θ (0,),求 θ的值

查看答案和解析>>

同步練習(xí)冊(cè)答案