【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足a1= ,2Sn﹣SnSn1=1(n≥2).
(1)猜想Sn的表達(dá)式,并用數(shù)學(xué)歸納法證明;
(2)設(shè)bn= ,n∈N* , 求bn的最大值.

【答案】
(1)解:∵S1=a1= ,2Sn=SnSn1+1(n≥2),

∴2S2=S2S1+1= S2+1,

∴S2=

∴2S3=S3S2+1= S3+1,

∴S3= ;

由S1= ,S2= ,S3= ,可猜想Sn=

證明:①當(dāng)n=1時(shí),S1= ,等式成立;

②假設(shè)n=k時(shí),Sk= ,

則n=k+1時(shí),∵2Sk+1=Sk+1Sk+1= Sk+1+1,

∴(2﹣ )Sk+1=1,

∴Sk+1= = ,

即n=k+1時(shí),等式也成立;

綜合①②知,對(duì)任意n∈N*,均有Sn=


(2)解:由(1)可知,n≥2時(shí),an=Sn﹣Sn1= = ,

當(dāng)n=1時(shí),a1= = 滿足上式,

∴an= ,

∴bn= = = ,n∈N*,

設(shè)f(n)=x+ ,則有f(x)在(0, )上為減函數(shù),在( ,+∞)為增函數(shù),

∵n∈N*,且f(5)=f(6)=11,

∴當(dāng)n=5或n=6時(shí),bn有最大值


【解析】(1)由S1=a1= ,2Sn=SnSn1+1(n≥2),通過計(jì)算可求得S1 , S2 , S3;可猜想Sn= ,再利用數(shù)學(xué)歸納法證明即可.(2)求出bn= ,n∈N*,構(gòu)造函數(shù)f(n)=x+ ,則利用函數(shù)的單調(diào)性即可求出.
【考點(diǎn)精析】本題主要考查了歸納推理和數(shù)學(xué)歸納法的定義的相關(guān)知識(shí)點(diǎn),需要掌握根據(jù)一類事物的部分對(duì)象具有某種性質(zhì),退出這類事物的所有對(duì)象都具有這種性質(zhì)的推理,叫做歸納推理;數(shù)學(xué)歸納法是證明關(guān)于正整數(shù)n的命題的一種方法才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx+ax2+x+1.

(I)a=﹣2時(shí),求函數(shù)f(x)的極值點(diǎn);

(Ⅱ)當(dāng)a=0時(shí),證明xex≥f(x)在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實(shí)施了機(jī)動(dòng)車車尾號(hào)限行,我市某報(bào)社為了解市區(qū)公眾對(duì)車輛限行的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:

)完成被調(diào)查人員的頻率分布直方圖;

)若從年齡在[1525),[25,35)的被調(diào)查者中各隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求恰有2人不贊成的概率;

)在()的條件下,再記選中的4人中不贊成車輛限行的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廣場(chǎng)舞是現(xiàn)代城市群眾文化、娛樂發(fā)展的產(chǎn)物,也是城市精神文明建設(shè)成果的一個(gè)重要象征.2016年某校社會(huì)實(shí)踐小組對(duì)某小區(qū)廣場(chǎng)舞的開展?fàn)顩r進(jìn)行了年齡的調(diào)查,隨機(jī)抽取了40名廣場(chǎng)舞者進(jìn)行調(diào)查,將他們年齡分成6段:,,,,后得到如圖所示的頻率分布直方圖.

(l)計(jì)算這40名廣場(chǎng)舞者中年齡分布在的人數(shù);

(2)若從年齡在中的廣場(chǎng)舞者任取2名,求這兩名廣場(chǎng)舞者中恰有一人年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)fk(n)為關(guān)于n的k(k∈N)次多項(xiàng)式.?dāng)?shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn . 對(duì)于任意的正整數(shù)n,an+Sn=fk(n)都成立. (Ⅰ)若k=0,求證:數(shù)列{an}是等比數(shù)列;
(Ⅱ)試確定所有的自然數(shù)k,使得數(shù)列{an}能成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人射擊一次命中7~10環(huán)的概率如下表

命中環(huán)數(shù)

7

8

9

10

命中概率

0.16

0.19

0.28

0.24

計(jì)算這名射手在一次 射擊中:
(1)射中10環(huán)或9環(huán)的概率;
(2)至少射中7環(huán)的概率;
(3)射中環(huán)數(shù)不足8環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2eax , a>0.
(1)證明:函數(shù)y=f(x)在(0,+∞)上為增函數(shù);
(2)若方程f(x)﹣1=0有且只有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)的導(dǎo)數(shù)y′=f′(x)仍是x的函數(shù),就把y′=f′(x)的導(dǎo)數(shù)y″=f″(x)叫做函數(shù)y=f(x)二階導(dǎo)數(shù),記做y2=f2(x).同樣函數(shù)y=f(x)的n﹣1階導(dǎo)數(shù)的導(dǎo)數(shù)叫做y=f(x)的n階導(dǎo)數(shù),表示yn=fn(x).在求y=ln(x+1)的n階導(dǎo)數(shù)時(shí),已求得 , ,根據(jù)以上推理,函數(shù)y=ln(x+1)的第n階導(dǎo)數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中, , ,記.若,則__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案