精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=x2(ax+b)在x=2時有極值(其中a,b∈R),其圖象在點(1,f(1))處的切線與直線3x+y=0平行,則函數f(x)的單調減區(qū)間為


  1. A.
    (-∞,0)
  2. B.
    (0,2)
  3. C.
    (2,+∞)
  4. D.
    (-∞,+∞)
B
解:f′(x)=3ax2+2bx,因為函數在x=2時有極值,所以f′(2)=12a+4b=0即3a+b=0①;
又直線3x+y=0的斜率為-3,則切線的斜率k=f′(1)=3a+2b=-3②,
聯立①②解得a=1,b=-3,
令f′(x)=3x2-6x<0即3x(x-2)<0,
解得0<x<2.
故選B
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=x|mx|(x∈R),且f(4)=0.

(1)求實數m的值;

(2)作出函數f(x)的圖像;

(3)根據圖像指出f(x)的單調遞減區(qū)間;

(4)根據圖像寫出不等式f(x)>0的解集;

(5)求當x∈[1,5)時函數的值域.

查看答案和解析>>

科目:高中數學 來源:新課標高三數學對數與對數函數、反比例函數與冪函數專項訓練(河北) 題型:解答題

已知函數f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是關于x的方程f(x)-g(x)=0的一個解,求t的值;
(2)當0<a<1時,不等式f(x)≥g(x)恒成立,求t的取值范圍;

查看答案和解析>>

科目:高中數學 來源:2014屆江西省高二下學期第二次月考文科數學試卷(解析版) 題型:解答題

已知函數f(x)=|x+1|,g(x)=2|x|+a.

(1)當a=0時,解不等式f(x)≥g(x);

(2)若任意x∈R,f(x)g(x)恒成立,求實數a的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2013屆新課標高三配套第四次月考文科數學試卷(解析版) 題型:解答題

已知函數f(x)=x3+x2-ax-a,x∈R,其中a>0.

(1)求函數f(x)的單調區(qū)間;

(2)若函數f(x)在區(qū)間(-2,0)內恰有兩個零點,求a的取值范圍;

(3)當a=1時,設函數f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數g(t)在區(qū)間[-3,-1]上的最小值.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年湖南省、岳陽縣一中高三11月聯考理科數學 題型:解答題

(本小題滿分13分)(第一問8分,第二問5分)

已知函數f(x)=2lnxg(x)=ax2+3x.

(1)設直線x=1與曲線yf(x)和yg(x)分別相交于點P、Q,且曲線yf(x)和yg(x)在點P、Q處的切線平行,若方程f(x2+1)+g(x)=3xk有四個不同的實根,求實數k的取值范圍;

(2)設函數F(x)滿足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數f(x)與g(x)的導函數;試問是否存在實數a,使得當x∈(0,1]時,F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

 

查看答案和解析>>

同步練習冊答案