(本小題滿分16分)
數(shù)列的前n項(xiàng)和為,存在常數(shù)A,B,C,使得對(duì)任意正整數(shù)n都成立。
(1) 若數(shù)列為等差數(shù)列,求證:3A-B+C=0;
(2) 若設(shè)數(shù)列的前n項(xiàng)和為,求;
(3) 若C=0,是首項(xiàng)為1的等差數(shù)列,設(shè),求不超過(guò)P的最大整數(shù)的值。
⑴見(jiàn)解析;⑵.⑶不超過(guò)的最大整數(shù)為
本試題主要是考查了數(shù)列的通項(xiàng)公式的求解,以及數(shù)列的求和,和運(yùn)用數(shù)列來(lái)證明不等式的綜合運(yùn)用。
(1)利用已知條件中通項(xiàng)公式和前n項(xiàng)和的關(guān)系式,得到前幾項(xiàng),結(jié)合等差數(shù)列的定義得到關(guān)系的證明。
(2)利用第一問(wèn)的結(jié)論,表示數(shù)列的通項(xiàng)公式,分析特點(diǎn),運(yùn)用錯(cuò)位相減法等求解前n項(xiàng)和。
(3)根據(jù)等差數(shù)列得到需要求解的和式,得到結(jié)論。
解:⑴因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222645996466.png" style="vertical-align:middle;" />為等差數(shù)列,設(shè)公差為,由,

對(duì)任意正整數(shù)都成立.
所以所以.      ………………………………4分
⑵ 因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222646449921.png" style="vertical-align:middle;" />,所以,
當(dāng)時(shí),,
所以,即
所以,而,
所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,所以. ……………7分
于是.所以①,,②
由①②,

所以.…………………………………………………………………10分
⑶ 因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222645996466.png" style="vertical-align:middle;" />是首項(xiàng)為的等差數(shù)列,由⑴知,公差,所以

,……………………………14分
所以,
所以,不超過(guò)的最大整數(shù)為.………………………………………………16分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)
已知數(shù)列,其前項(xiàng)和為.
(Ⅰ)求,;
(Ⅱ)求數(shù)列的通項(xiàng)公式,并證明數(shù)列是等差數(shù)列;
(Ⅲ)如果數(shù)列滿足,請(qǐng)證明數(shù)列是等比數(shù)列,并求其前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列的通項(xiàng)是關(guān)于x的不等式  的解集中整數(shù)的個(gè)數(shù).
(1)求并且證明是等差數(shù)列;
(2)設(shè)m、k、p∈N*,m+p=2k,求證:;
(3)對(duì)于(2)中的命題,對(duì)一般的各項(xiàng)均為正數(shù)的等差數(shù)列還成立嗎?如果成立,
請(qǐng)證明你的結(jié)論,如果不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)數(shù)列的首項(xiàng),且滿足,則數(shù)列的前10項(xiàng)和為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在⊿ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊,A<B<C,A,B,C成等差數(shù)列,公差為,且也成等差數(shù)列.
(I)求;
(II)若,求⊿ABC的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列中,,且滿足,
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)為非零整數(shù),),試確定的值,使得對(duì)任意,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)等差數(shù)列的前項(xiàng)和為,公比是正數(shù)的等比數(shù)列的前項(xiàng)和為,已知
(1)求的通項(xiàng)公式。
(2)若數(shù)列滿足 求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知 是數(shù)列的前項(xiàng)和,且
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的正整數(shù)的個(gè)數(shù)稱為這個(gè)數(shù)列 的變號(hào)數(shù),令(n為正整數(shù)),求數(shù)列的變號(hào)數(shù);
(3)記數(shù)列的前的和為,若對(duì)恒成立,求正整數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列中,(    )
A. 5B.6C.4D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案