求證:(1)sinαcosβ=[sin(α+β)+sin(α-β)];

(2)sin+sin=2sincos

答案:
解析:


提示:

本例是積化和差、和差化積公式的證明,所用的方程思想和換元的方法很巧妙,使公式的證明變得十分簡單.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求證:
1+sinα
1-2sin2
α
2
=
1+tan
α
2
1-tan
α
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:
1+sinα+cosα+2sinαcosα1+sinα+cosα
=sinα+cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求證:
1+sinα+cosα+2sinαcosα
1+sinα+cosα
=sinα+cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求證:
1+sinα+cosα+2sinαcosα
1+sinα+cosα
=sinα+cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求證:
1+sinα
1-2sin2
α
2
=
1+tan
α
2
1-tan
α
2

查看答案和解析>>

同步練習(xí)冊答案