【題目】已知函數(shù)f(x)=sin(ωx+θ),其中ω>0,θ∈(0,),=0,(x1≠x2),|x2-x1min,f(x)=f(-x),將函數(shù)f(x)的圖象向左平移個單位長度得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)遞減區(qū)間是

A. [kπ-,kπ+](k∈Z) B. [kπ,kπ+](k∈Z)

C. [kπ+,kπ+](k∈Z) D. [kπ+,kπ+](k∈Z)

【答案】B

【解析】

利用正弦函數(shù)的周期性以及圖象的對稱性求得f(x)的解析式,利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,利用余弦函數(shù)的單調(diào)性求得則g(x) 的單調(diào)遞減區(qū)間.

∵f(x)=sin(ωx+θ),其中ω>0,θ∈(0,),f'(x1)=f'(x2)=0,|x2﹣x1|min=,

T==,

∴ω=2,

∴f(x)=sin(2x+θ).

又f(x)=f(﹣x),

f(x)的圖象的對稱軸為x=,

∴2+θ=kπ+,k∈Z,又

∴θ=,f(x)=sin(2x+).

將f(x)的圖象向左平移 個單位得g(x)=sin(2x++)=cos2x 的圖象,

令2kπ≤2x≤2kπ+π,求得kπ≤x≤kπ+,則g(x)=cos2x 的單調(diào)遞減區(qū)間是[kπ,kπ+],

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將三個數(shù),,給予適當(dāng)?shù)木幣牛謩e取常用對數(shù)后成公差為1的等差數(shù)列,那么,此時______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題對任意實(shí)數(shù),不等式恒成立;命題方程表示焦點(diǎn)在軸上的雙曲線.

(1)若命題為真命題,求實(shí)數(shù)的取值范圍;

(2)若命題:為真命題,且為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】九章算術(shù)中將底面為長方形,且有一條側(cè)棱與底面垂直的四棱錐稱之為“陽馬”現(xiàn)有一陽馬,其正視圖和側(cè)視圖是如圖所示的直角三角形若該陽馬的頂點(diǎn)都在同一個球面上,且該球的表面積為,則該“陽馬”的體積為__

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①正切函數(shù)圖象的對稱中心是唯一的;

②若函數(shù)的圖像關(guān)于直線對稱,則這樣的函數(shù)是不唯一的;

③若,是第一象限角,且,則;

④若是定義在上的奇函數(shù),它的最小正周期是,則

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】)計算:

①若是橢圓長軸的兩個端點(diǎn),,則______;

②若是橢圓長軸的兩個端點(diǎn),,則______

③若是橢圓長軸的兩個端點(diǎn),,則______

)觀察①②③,由此可得到:若是橢圓長軸的兩個端點(diǎn),為橢圓上任意一點(diǎn),則?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且函數(shù)圖像的兩相鄰對稱軸間的距離為.

1)求的值.

2)將函數(shù)的圖像向右平移個單位,再將得到的圖像上每個點(diǎn)的橫坐標(biāo)伸長到原來的倍,縱坐標(biāo)不變,得到函數(shù)的圖像,求的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,、是兩個小區(qū)所在地,、到一條公路的垂直距離分別為,兩端之間的距離為.

1)某移動公司將在之間找一點(diǎn),在處建造一個信號塔,使得的張角與的張角相等,試確定點(diǎn)的位置.

2)環(huán)保部門將在之間找一點(diǎn),在處建造一個垃圾處理廠,使得、所張角最大,試確定點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱垂直于底面,,,分別為,的中點(diǎn).

(1)證明:

(2)若,求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案