【題目】如圖所示,正方形與矩形所在平面互相垂直,,點為的中點.
(1)求證: 平面;
(2)設在線段上存在點,使二面角的大小為,求此時的長及點到平面的距離.
【答案】(1)證明見解析;(2).
【解析】
(1) 連結AD1,交A1D于點O,由EO為△ABD1的中位線,能證明BD1∥平面A1DE;
(2) 以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系,利用空間向量坐標法即可得到結果.
(1)證明:連結AD1,交A1D于點O,
∵四邊形ADD1A1為正方形,
∴O是AD1的中點,∵點E為AB的中點,連接OE.
∴EO為△ABD1的中位線,∴EO∥BD1,
又∵BD1不包含于平面A1DE,OE平面A1DE,
∴BD1∥平面A1DE.
(2)由題意可得:,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系,則,
B ( 1,2,0 ),E(1,1,0),
設
設平面的法向量為
則 得
取是平面的一個法向量,而平面的一個法向量為 要使二面角的大小為
而
解得:,故=,此時
故點E到平面的距離為
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形,是矩形,平面平面,,,,為的中點.
(1)求證:∥平面;
(2)在線段上是否存在點,使二面角的大小為?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD,,,,,點E為棱PC的中點.
1證明:;
2求BE的長;
3若F為棱PC上一點,滿足,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某書店剛剛上市了《中國古代數(shù)學史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):
單價(元) | 18 | 19 | 20 | 21 | 22 |
銷量(冊) | 61 | 56 | 50 | 48 | 45 |
(l)根據(jù)表中數(shù)據(jù),請建立關于的回歸直線方程:
(2)預計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應定為多少元?
附:,,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在直三棱柱ABCA1B1C1中,側面BCC1B1為正方形,A1B1⊥B1C1.設A1C與AC1交于點D,B1C與BC1交于點E.
求證:(1)DE∥平面ABB1A1;
(2)BC1⊥平面A1B1C.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)調查,3個成年人中就有一個高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國際衛(wèi)生組織對大量不同年齡的人群進行血壓調查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
年齡x | 28 | 32 | 38 | 42 | 48 | 52 | 58 | 62 |
收縮壓單位 | 114 | 118 | 122 | 127 | 129 | 135 | 140 | 147 |
其中:,,
請畫出上表數(shù)據(jù)的散點圖;
請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;的值精確到
若規(guī)定,一個人的收縮壓為標準值的倍,則為血壓正常人群;收縮壓為標準值的倍,則為輕度高血壓人群;收縮壓為標準值的倍,則為中度高血壓人群;收縮壓為標準值的倍及以上,則為高度高血壓人群一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com