【題目】已知三個(gè)村莊A,B,C構(gòu)成一個(gè)三角形,且AB=5千米,BC=12千米,AC=13千米.為了方便市民生活,現(xiàn)在△ABC內(nèi)任取一點(diǎn)M建一大型生活超市,則M到A,B,C的距離都不小于2千米的概率為
A. B. C. D.
【答案】C
【解析】
根據(jù)條件作出對應(yīng)的圖象,求出對應(yīng)的面積,根據(jù)幾何概型的概率公式進(jìn)行計(jì)算即可.
解:在△ABC中,AB=5,BC=12,AC=13,則△ABC為直角三角形,且∠B為直角。
則△ABC的面積S=,
若在三角形ABC內(nèi)任取一點(diǎn),則該點(diǎn)到三個(gè)定點(diǎn)A,B,C的距離不小于2,
則該點(diǎn)位于陰影部分,
則三個(gè)小扇形的圓心角轉(zhuǎn)化為180°,半徑為2,則對應(yīng)的面積之和為S=,
則陰影部分的面積S= ,
則對應(yīng)的概率P=== ,
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以橢圓的離心率為,以其四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積等于.
1求橢圓的標(biāo)準(zhǔn)方程;
2過原點(diǎn)且斜率不為0的直線與橢圓交于兩點(diǎn),是橢圓的右頂點(diǎn),直線分別與軸交于點(diǎn),問:以為直徑的圓是否恒過軸上的定點(diǎn)?若恒過軸上的定點(diǎn),請求出該定點(diǎn)的坐標(biāo);若不恒過軸上的定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是圓錐的底面的直徑,是圓上異于的任意一點(diǎn),以為直徑的圓與的另一個(gè)交點(diǎn)為為的中點(diǎn).現(xiàn)給出以下結(jié)論:
①為直角三角形
②平面平面
③平面必與圓錐的某條母線平行
其中正確結(jié)論的個(gè)數(shù)是
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形的面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線C的參數(shù)方程和直線的直角坐標(biāo)方程;
(2)若直線與軸和y軸分別交于A,B兩點(diǎn),P為曲線C上的動點(diǎn),求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知動點(diǎn)P與兩定點(diǎn)F1(﹣1,0)、F2(1,0)的連線的斜率之積為,求動點(diǎn)P的軌跡方程.
(2)已知雙曲線的漸近線方程為y=±x,且與橢圓1有公共焦點(diǎn),求此雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為 (其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(Ⅰ)求C的普通方程和直線的傾斜角;
(Ⅱ)設(shè)點(diǎn)(0,2),和交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心在直線: 上,與直線: 相切,且截直線: 所得弦長為6
(Ⅰ)求圓的方程
(Ⅱ)過點(diǎn)是否存在直線,使以被圓截得弦為直徑的圓經(jīng)過原點(diǎn)?若存在,寫出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線: (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為.
(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線交曲線于, 兩點(diǎn),交曲線于, 兩點(diǎn),求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com