【題目】下列說(shuō)法正確的是( )

A. 為真”是“為真”的充分不必要條件;

B. 樣本的標(biāo)準(zhǔn)差是3.3

C. K2是用來(lái)判斷兩個(gè)分類變量是否相關(guān)的隨機(jī)變量,當(dāng)K2的值很小時(shí)可以推定兩類變量不相關(guān);

D. 設(shè)有一個(gè)回歸直線方程為,則變量每增加一個(gè)單位,平均減少1.5個(gè)單位.

【答案】D

【解析】逐一分析所給的選項(xiàng):

A,pq為真,則p、q均為真,pq為真,p、q至少一個(gè)為真,故“pq為真”是“pq為真”的必要不充分條件,故不正確;

B,樣本10,6,8,5,6的平均數(shù)為7,方差為 ,標(biāo)準(zhǔn)差是 ,故不正確;

C,K2的值很小時(shí),只能說(shuō)兩個(gè)變量的相關(guān)程度低,不能推定兩個(gè)變量不相關(guān)。所以C錯(cuò);

D,設(shè)有一個(gè)回歸直線方程為 ,則變量x毎增加一個(gè)單位,y平均減少1.5個(gè)單位,正確。

本題選擇D選項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知極點(diǎn)直角坐標(biāo)系的原點(diǎn)重合,極軸與的正半軸重合,圓極坐標(biāo)方程是,直線參數(shù)方程是參數(shù)).

(1),直線的交點(diǎn),一動(dòng)點(diǎn),求最大值

(2)若直線得的弦長(zhǎng),值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)若曲線處的切線的方程為,求實(shí)數(shù)的值;

(2)設(shè),若對(duì)任意兩個(gè)不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;

(3)若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市一汽車出租公司為了調(diào)查A,B兩種車型的出租情況,現(xiàn)隨機(jī)抽取了這兩種車型各100輛,分別統(tǒng)計(jì)了每輛車某個(gè)星期內(nèi)的出租天數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表:

A車型 B車型

出租天數(shù)

1

2

3

4

5

6

7

出租天數(shù)

1

2

3

4

5

6

7

車輛數(shù)

5

10

30

35

15

3

2

車輛數(shù)

14

20

20

16

15

10

5

(Ⅰ)從出租天數(shù)為3天的汽車(僅限A,B兩種車型)中隨機(jī)抽取一輛,估計(jì)這輛汽車恰好是A型車的概率;

(Ⅱ)根據(jù)這個(gè)星期的統(tǒng)計(jì)數(shù)據(jù),估計(jì)該公司一輛A型車,一輛B型車一周內(nèi)合計(jì)出租天數(shù)恰好為4天的概率;

(Ⅲ)

(。┰噷懗AB兩種車型的出租天數(shù)的分布列及數(shù)學(xué)期望;

(ⅱ)如果兩種車輛每輛車每天出租獲得的利潤(rùn)相同,該公司需要從A,B兩種車型中購(gòu)買一輛(注:兩種車型的采購(gòu)價(jià)格相當(dāng)),請(qǐng)你根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),建議應(yīng)該購(gòu)買哪一種車型,并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖甲,直角梯形中, ,點(diǎn)分別在上,且, ,現(xiàn)將梯形沿折起,使平面與平面垂直(如圖乙).

(Ⅰ)求證: 平面

(II)當(dāng)的長(zhǎng)為何值時(shí),二面角的大小為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求在區(qū)間上的最值;

(2)討論函數(shù)的單調(diào)性;

(3)當(dāng)時(shí),有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了鼓勵(lì)市民節(jié)約用電,實(shí)行“階梯式”電價(jià),將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費(fèi),超過200度但不超過400度的部分按0.8元/度收費(fèi),超過400度的部分按1.0元/度收費(fèi).

(1)求某戶居民用電費(fèi)用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;

2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費(fèi)用不超過260元的點(diǎn)80%,求的值;

(3)在滿足(2)的條件下,估計(jì)1月份該市居民用戶平均用電費(fèi)用(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某校組織的“共筑中國(guó)夢(mèng)”競(jìng)賽活動(dòng)中,甲、乙兩班各有6位選手參賽,在第一輪筆試環(huán)節(jié)中,評(píng)委將他們的筆試成績(jī)作為樣本數(shù)據(jù),繪制成如圖所示的莖葉圖.為了增加結(jié)果的神秘感,主持人暫時(shí)沒有公布甲、乙兩班最后一位選手的成績(jī).

(Ⅰ)求乙班總分超過甲班的概率;

(Ⅱ)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.請(qǐng)你從平均分和方差的角度來(lái)分析兩個(gè)班的選手的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為 (為參數(shù)).

(I)寫出直線的一般方程與曲線的直角坐標(biāo)方程,并判斷它們的位置關(guān)系;

(II)將曲線向左平移個(gè)單位長(zhǎng)度,向上平移個(gè)單位長(zhǎng)度,得到曲線,設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點(diǎn)為,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案