【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn , 且Sn+ an=1(n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= (1﹣Sn+1)(n∈N+),令Tn= ,求Tn

【答案】
(1)解:當(dāng)n=1時(shí),a1=S1,由 ,得:

當(dāng)n≥2時(shí),

,即 ,

所以

,∴

故數(shù)列{an}是以 為首項(xiàng), 為公比的等比數(shù)列.

(n∈N*).


(2)解:∵ ,∴

所以,Tn= = =


【解析】(1)首先由遞推式求出a1 , 取n=n﹣1(n≥2)得另一遞推式,兩式作差后可證出數(shù)列{an}是等比數(shù)列,則其通項(xiàng)公式可求;(2)把(1)中求出的an代入遞推式,則可求出1﹣Sn+1 , 整理后得到bn , 最后利用裂項(xiàng)相消求Tn
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等差數(shù)列的通項(xiàng)公式(及其變式)和等比數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握通項(xiàng)公式:;通項(xiàng)公式:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】?jī)蓚(gè)非零向量 、 不共線(xiàn).
(1)若 = + , =2 +8 , =3( ),求證:A、B、D三點(diǎn)共線(xiàn);
(2)求實(shí)數(shù)k使k + 與2 +k 共線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中, , , , 分別為上的點(diǎn),

1當(dāng)中點(diǎn)時(shí),求證: ;

2當(dāng)上運(yùn)動(dòng)時(shí),求三棱錐體積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我省城鄉(xiāng)居民社會(huì)養(yǎng)老保險(xiǎn)個(gè)人年繳費(fèi)分100,200,300,400,500,600,700,800,900,1000(單位:元)十個(gè)檔次,某社區(qū)隨機(jī)抽取了50名村民,按繳費(fèi)在100:500元,600:1000元,以及年齡在20:39歲,40:59歲之間進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)如下:

100﹣500元

600﹣1000

總計(jì)

20﹣39

10

6

16

40﹣59

15

19

34

總計(jì)

25

25

50

(1)用分層抽樣的方法在繳費(fèi)100:500元之間的村民中隨機(jī)抽取5人,則年齡在20:39歲之間應(yīng)抽取幾人?
(2)在繳費(fèi)100:500元之間抽取的5人中,隨機(jī)選取2人進(jìn)行到戶(hù)走訪(fǎng),求這2人的年齡都在40:59歲之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】汽車(chē)廠(chǎng)生產(chǎn)A,B,C三類(lèi)轎車(chē),每類(lèi)轎車(chē)均有舒適型和標(biāo)準(zhǔn)型兩種型號(hào),某月的產(chǎn)量如下表(單位:輛);

轎車(chē)A

轎車(chē)B

轎車(chē)C

舒適型

100

150

z

標(biāo)準(zhǔn)型

300

450

600

按類(lèi)用分層抽樣的方法在這個(gè)月生產(chǎn)的轎車(chē)中抽取50輛,其中有A類(lèi)轎車(chē)10輛.
(1)求z的值;
(2)用分層抽樣的方法在C類(lèi)轎車(chē)中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任取2輛,求至少有1輛舒適型轎車(chē)的概率;
(3)用隨機(jī)抽樣的方法從B類(lèi)舒適型轎車(chē)中抽取8輛,經(jīng)檢測(cè)它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把這8輛轎車(chē)的得分看成一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過(guò)0.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿(mǎn)足,且對(duì)任意非負(fù)整數(shù)均有:

(1)求

(2)求證:數(shù)列是等差數(shù)列,并求的通項(xiàng);

(3)令,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱底面 , 的中點(diǎn), ,四棱錐的體積為.

(Ⅰ)求證: 平面

(Ⅱ)求直線(xiàn)與平面所成角的正弦值;

(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}滿(mǎn)足Sn=2n﹣an(n∈N*).
(1)計(jì)算a1 , a2 , a3 , a4 , 并由此猜想通項(xiàng)公式an
(2)用數(shù)學(xué)歸納法證明(Ⅰ)中的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}滿(mǎn)足:a3=6,a5+a7=24,{an}的前n項(xiàng)和為Sn
(1)求an及Sn;
(2)令bn= (n∈N+),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案