【題目】若曲線(xiàn)C1:x2+y2-2x=0與曲線(xiàn)C2:y(y-mx+3m)=0有四個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是

A. B.

C. D.

【答案】A

【解析】

由題意可知曲線(xiàn)表示一個(gè)圓,曲線(xiàn)表示兩條直線(xiàn),把圓的方程化為標(biāo)準(zhǔn)方程后找出圓心與半徑,此圓與有兩交點(diǎn),由兩曲線(xiàn)要有4個(gè)交點(diǎn)可知,圓與要有2個(gè)交點(diǎn),根據(jù)直線(xiàn)過(guò)定點(diǎn),先求出直線(xiàn)與圓相切時(shí)的值,然后根據(jù)圖象可寫(xiě)出滿(mǎn)足題意的的范圍.

由題意可知曲線(xiàn)表示一個(gè)圓,化為標(biāo)準(zhǔn)方程得:

圓心坐標(biāo)為,半徑;

表示兩條直線(xiàn),

由直線(xiàn)可知,此直線(xiàn)過(guò)定點(diǎn),

直線(xiàn)和圓交于點(diǎn),

因此直線(xiàn)與圓相交即可滿(mǎn)足條件,

當(dāng)直線(xiàn)與圓相切時(shí),圓心到直線(xiàn)的距離

化簡(jiǎn)得,解得,

時(shí),直線(xiàn)方程為,兩直線(xiàn)重合,不合題意,

則直線(xiàn)與圓相交時(shí),,故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)是R上的奇函數(shù),在(0,+)上是增函數(shù),且f3=0,則滿(mǎn)足fx>0的實(shí)數(shù)x的范圍是(

A.,30,3B.3,03,+

C.,33,+D.3,00,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的圖象與直線(xiàn)恰有三個(gè)不同的交點(diǎn),則實(shí)數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,且,過(guò)點(diǎn)的直線(xiàn)與橢圓交于,兩點(diǎn),的周長(zhǎng)為8.

(Ⅰ)求橢圓的方程;

(Ⅱ)試問(wèn):是否存在定點(diǎn),使得為定值?若存在,求;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線(xiàn)ly=2x-4,設(shè)圓C的半徑為1,圓心C在直線(xiàn)l上,若圓C上存在點(diǎn)M,使|MA|=2|MO|,則點(diǎn)M的軌跡方程是________,圓心C的橫坐標(biāo)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校兩個(gè)班的數(shù)學(xué)興趣小組在一次數(shù)學(xué)對(duì)抗賽中的成績(jī)繪制莖葉圖如下,通過(guò)莖葉圖比較兩班數(shù)學(xué)興趣小組成績(jī)的平均值及方差

班數(shù)學(xué)興趣小組的平均成績(jī)高于班的平均成績(jī)

班數(shù)學(xué)興趣小組的平均成績(jī)高于班的平均成績(jī)

班數(shù)學(xué)興趣小組成績(jī)的標(biāo)準(zhǔn)差大于班成績(jī)的標(biāo)準(zhǔn)差

班數(shù)學(xué)興趣小組成績(jī)的標(biāo)準(zhǔn)差大于班成績(jī)的標(biāo)準(zhǔn)差

其中正確結(jié)論的編號(hào)為( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若對(duì)于任意,都有恒成立,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)處取得極值,求的值;

(2)設(shè),試討論函數(shù)的單調(diào)性;

(3)當(dāng)時(shí),若存在正實(shí)數(shù)滿(mǎn)足,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中a

當(dāng)時(shí),若處取得極小值,求a的值;

當(dāng)時(shí).

若函數(shù)在區(qū)間上單調(diào)遞增,求b的取值范圍;

若存在實(shí)數(shù),使得,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案