分析 (1)利用二倍角公式化簡,通過解方程求解即可.
(2)①利用正弦函數(shù)的周期的求法,以及對稱中心的求法求解即可.
②求出相位的范圍,利用正弦函數(shù)的值域求解即可.
解答 解:(1)∵sinα−cosα=15①
∴1−2sinαcosα=125
∴sin2α=2425,1+2sinαcosα=4925,
sinα+cosα=75②
聯(lián)立①,②解得:sinα=45,cosα=35.
(2)①f(x)=5cos(2x-α)+cos2x
=5cos2xcosα+5sin2xsinα+cos2x
=3cos2x+4sin2x+cos2x
=4(sin2x+cos2x)
=4√2sin(2x+π4)
令2x+π4=kπ,得:x=kπ2−π8,(k∈Z)
圖象的對稱軸方程為:(kπ2−π8,0)(k∈Z).
②當(dāng)x∈[−11π24,−5π24],2x+π4∈[−2π3,−π6],
∴sin(2x+π4)∈[−1,−12]
∴f(x)的值域?yàn)椋篬−4√2,−2√2]
點(diǎn)評 本題考查三角函數(shù)的化簡求值,恒等變換的應(yīng)用,直線函數(shù)的簡單性質(zhì)的應(yīng)用,考查計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-13,12] | B. | [-23,-12] | C. | [-23,12] | D. | [-23,23] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 23 | C. | 13 | D. | 34 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 1011 | C. | 111 | D. | 1110 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com