設(shè)變量x,y滿足約束條件
2x+y-2≥0
x-2y+4≥0
x-1≤0
,則目標函數(shù)z=3x+2y的最小值為( 。
分析:作出不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,進行求最值即可.
解答:解:由z=3x+2y得y=-
3
2
x+
z
2

作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分):
平移直線y=-
3
2
x+
z
2
由圖象可知當直線y=-
3
2
x+
z
2
經(jīng)過點C時,直線y=-
3
2
x+
z
2
的截距最小,
此時z也最小,將C(1,0)代入目標函數(shù)z=3x+2y,
得z=3.
故選A.
點評:本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)變量x,y滿足約束條件
y≤2
3
x-3y≤0
x+
3
y-2
3
≥0
,則目標函數(shù)u=x2+y2的最大值M與最小值N的比
M
N
=(  )
A、
4
3
3
B、
16
3
3
C、
4
3
D、
16
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)變量x,y滿足約束條件
x+y≥2
x≤1
y≤2
,則目標函數(shù)z=-x+y的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•河西區(qū)一模)設(shè)變量x、y滿足約束條件
y≥0
x-y+1≥0
x+y-3≤0
,則z=2x+y的最大值為
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科)設(shè)變量x,y滿足約束條件
2x-y≤0
x-3y+5≥0
x≥0
,則目標函數(shù)z=x-y的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江西模擬)設(shè)變量x,y滿足約束條件
x+1≥0
x-y+1≤0
x+y-2≤0
,則z=4x+y的最大值為( 。

查看答案和解析>>

同步練習冊答案