(2012•太原模擬)某高中社團(tuán)進(jìn)行社會(huì)實(shí)踐,對(duì)[25,55]歲的人群隨機(jī)抽取n人進(jìn)行了一次是否開(kāi)通“微博”的調(diào)查,若開(kāi)通“微博”的為“時(shí)尚族”,否則稱為“非時(shí)尚族”.通過(guò)調(diào)查分別得到如圖1
所示統(tǒng)計(jì)表和如圖2所示各年齡段人數(shù)頻率分布直方圖:


請(qǐng)完成以下問(wèn)題:
(1)補(bǔ)全頻率直方圖,并求n,a,p的值
(2)從[40,45)歲和[45,50)歲年齡段的“時(shí)尚族”中采用分層抽樣法抽取6人參加網(wǎng)絡(luò)時(shí)尚達(dá)人大賽,其中選取2人作為領(lǐng)隊(duì),求選取的2名領(lǐng)隊(duì)中年齡在[40,45)歲的概率.
分析:(1)根據(jù)題意,由頻率分步直方圖的意義可得第二組的頻率,進(jìn)而可得其對(duì)應(yīng)長(zhǎng)方形的高,據(jù)此可以補(bǔ)全直方圖,結(jié)合分布表,計(jì)算可得n、a、p的值;
(2)先有分層抽樣方法可得各個(gè)年齡段的人數(shù),設(shè)a1、a2、a3、a4為[40,45)歲中抽得的4人,b1、b2為[45,50)歲中抽得的2人,進(jìn)而用列舉法可得抽出2人的全部情況,由古典概型公式計(jì)算可得答案.
解答:解(1)第二組的頻率為1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,
所以高為
0.3
5
=0.06.頻率直方圖如下:
  
第一組的人數(shù)為
120
0.6
=200,頻率為0.04×5=0.2,所以n=
200
0.2
=1000,
所以第二組的人數(shù)為1000×0.3=300,p=
195
300
=0.65,
四組的頻率為 0.03×5=0.15,第四組的人數(shù)為1000×0.15=150,
所以a=150×0.4=60.       
(2)因?yàn)閇40,45)歲與[45,50)歲年齡段的“時(shí)尚族”的比值為60:30=2:1,
所以采用分層抽樣法抽取6人,[40,45)歲中有4人,[45,50)歲中有2人.
設(shè)a1、a2、a3、a4為[40,45)歲中抽得的4人,b1、b2為[45,50)歲中抽得的2人,
全部可能的結(jié)果有:
(a1,a2),( a1,a3),( a1,a4),( a1,b1),( a1,b2),(a2,a3),(a2,a4),(a2,b1),(a2,b2),(a3,a4),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(b1,b2),共15個(gè),
所以所求概率為
6
15
=
2
5
點(diǎn)評(píng):本題考查頻率分步直方圖的畫(huà)法、應(yīng)用以及列舉法求古典概型,關(guān)鍵是掌握頻率分步直方圖意義以及運(yùn)算、
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•太原模擬)已知向量
a
=(1,2)
b
=(x,4)
,且
a
b
,則x=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•太原模擬)已知向量
a
=(2,4),
b
=(1,1),若向量
b
⊥(λ
a
+
b
),則實(shí)數(shù)λ的值是
-
1
3
-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•太原模擬)已知復(fù)數(shù)(a2-4a+3)+(a-1)i是純虛數(shù),(a∈R),則實(shí)數(shù)a的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•太原模擬)選修4-1:幾何證明選講
如圖,已知PA與圓O相切于點(diǎn)A,經(jīng)過(guò)點(diǎn)O的割線PBC交圓O于點(diǎn)B,C,∠APC的平分線分別交AB,AC于點(diǎn)D,E.
(Ⅰ)證明:∠ADE=∠AED;
(Ⅱ)若AC=AP,求
PCPA
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•太原模擬)已知函數(shù)f(x)=2x+x,g(x)=log2x+x,h(x)=log4x+x的零點(diǎn)依次為a,b,c,則( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案