某程序的框圖如圖所示,執(zhí)行該程序,若輸入的P為24,則輸出的n,S的值分別為
 

考點(diǎn):程序框圖
專題:算法和程序框圖
分析:算法的功能是求S=3+6+…+3n的值,根據(jù)S=3+6+9=18<24,S=3+6+9+12=30>24,確定跳出循環(huán)的n值,可得答案.
解答: 解:由程序框圖知:算法的功能是求S=3+6+…+3n的值,
當(dāng)輸入的P為24時(shí),S=3+6+9=18<24,S=3+6+9+12=30>24,
∴跳出循環(huán)的n值為5,輸出S=30,
故答案為:5,30
點(diǎn)評(píng):本題考查了循環(huán)結(jié)構(gòu)的程序框圖,關(guān)鍵框圖的流程判斷是否的功能及確定跳出循環(huán)n值是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
an+1

(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)若bn=2 
1
an
-n,Sn=b1+b2+…+bn,求使Sn-2n+1+47<0成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若要做一個(gè)容積為108的方底(底為正方形)無蓋的水箱,則它的高為
 
時(shí),材料最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lnx,x>0
g(x),x<0
是奇函數(shù),則f(-e)的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)y=f(x),若存在定義域D內(nèi)某個(gè)區(qū)間[a,b],使得y=f(x)在[a,b]上的值域也為[a,b],則稱函數(shù)y=f(x)在定義域D上封閉,如果函數(shù)f(x)=-
4x
1+|x|
在R上封閉,則b-a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)統(tǒng)計(jì),用于數(shù)學(xué)學(xué)習(xí)的時(shí)間(單位:小時(shí))與成績(單位:分)近似于線性相關(guān)關(guān)系.對(duì)某小組學(xué)生每周用于數(shù)學(xué)的學(xué)習(xí)時(shí)間x與數(shù)學(xué)成績y進(jìn)行數(shù)據(jù)收集如下:
x 15 16 18 19 22
y 102 98 115 115 120
由表中樣本數(shù)據(jù)求得回歸方程為
y
=bx+a,且點(diǎn)(a,b)在直線x+18y=m上,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=sin(2x+
π
6
)-cos2x,則f(x)在[0,
π
2
]上的最大值與最小值之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題,其中正確的命題是
 
(把所有正確的命題的選項(xiàng)都填上).
①函數(shù)y=f(x-2)和y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱.
②在R上連續(xù)的函數(shù)f(x)若是增函數(shù),則對(duì)任意x0∈R均有f′(x0)>0成立.
③底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐.
④若P為雙曲線x2-
y2
9
=1上一點(diǎn),F(xiàn)1、F2為雙曲線的左右焦點(diǎn),且|PF2|=4,則|PF1|=2或6
⑤已知函數(shù)y=2sin(ωx+θ)(ω>0,0<θ<π)為偶函數(shù),其圖象與直線y=2的交點(diǎn)的橫坐標(biāo)為x1,x2,若|x1-x2|的最小值為π,則ω的值為2,θ的值為
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的是( 。
A、命題“若x2-5x+6=0,則x=2”的逆命題是“若x≠2,則x2-5x+6≠0”
B、對(duì)命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,則x2+x+1<0
C、著實(shí)數(shù)x,y∈[0,1],則滿足
x2+y2<1
x+y≥1
的概率是
π
4
-
1
2
D、已知a=
π
0
sinxdx,則點(diǎn)(
3
,a)到直線
3
x-y+1=0的距離為3

查看答案和解析>>

同步練習(xí)冊(cè)答案