【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn).
(Ⅰ)證明: BC1//平面A1CD;
(Ⅱ)設(shè)AA1= AC=CB=2,AB=2,求三棱錐C一A1DE的體積.
【答案】(Ⅰ)見解析(Ⅱ)
【解析】
試題(Ⅰ)連接AC1交A1C于點(diǎn)F,則DF為三角形ABC1的中位線,故DF∥BC1.再根據(jù)直線和平面平行的判定定理證得BC1∥平面A1CD.(Ⅱ)由題意可得此直三棱柱的底面ABC為等腰直角三角形,由D為AB的中點(diǎn)可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.進(jìn)而求得S△A1DE的值,再根據(jù)三棱錐C-A1DE的體積為S△A1DECD,運(yùn)算求得結(jié)果
試題解析:(1)證明:連結(jié)AC1交A1C于點(diǎn)F,則F為AC1中點(diǎn)又D是AB中點(diǎn),
連結(jié)DF,則BC1∥DF. 3分
因?yàn)?/span>DF平面A1CD,BC1不包含于平面A1CD, 4分
所以BC1∥平面A1CD. 5分
(2)解:因?yàn)?/span>ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D為AB的中點(diǎn),所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1. 8分
由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D 10分
所以三菱錐C﹣A1DE的體積為:==1. 12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,五面體ABCDE中,四邊形ABDE是菱形,△ABC是邊長為2的正三角形,∠DBA=60°, .
(1)證明:DC⊥AB;
(2)若點(diǎn)C在平面ABDE內(nèi)的射影H,求CH與平面BCD所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市組織了一次高二調(diào)研考試,考試后統(tǒng)計(jì)的數(shù)學(xué)成績服從正態(tài)分布,其密度函數(shù), x∈(-∞,+∞),則下列命題不正確的是( )
A. 該市這次考試的數(shù)學(xué)平均成績?yōu)?/span>80分
B. 分?jǐn)?shù)在120分以上的人數(shù)與分?jǐn)?shù)在60分以下的人數(shù)相同
C. 分?jǐn)?shù)在110分以上的人數(shù)與分?jǐn)?shù)在50分以下的人數(shù)相同
D. 該市這次考試的數(shù)學(xué)成績標(biāo)準(zhǔn)差為10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次函數(shù).
(1)寫出該函數(shù)的頂點(diǎn)坐標(biāo);
(2)如果該函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex(x3﹣3x+3)﹣aex﹣x(x≥﹣2),若不等式f(x)≤0有解,則實(shí)數(shù)α的最小值為( )
A.
B.2﹣
C.1﹣
D.1+2e2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線C的方程為 ,點(diǎn) ,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.
(1)求曲線C的直角坐標(biāo)方程及點(diǎn)R的直角坐標(biāo);
(2)設(shè)P為曲線C上一動點(diǎn),以PR為對角線的矩形PQRS的一邊垂直于極軸,求矩形PQRS周長的最小值及此時(shí)點(diǎn)P的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與x軸非負(fù)半軸重合,直線的極坐標(biāo)方程為,圓C的參數(shù)方程為,
(1)求直線被圓C所截得的弦長;
(2)已知點(diǎn),過點(diǎn)的直線與圓所相交于不同的兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對某種食材營養(yǎng)價(jià)值的認(rèn)識程度,某檔健康養(yǎng)生電視節(jié)目組織名營養(yǎng)專家和名現(xiàn)場觀眾各組成一個評分小組,給食材的營養(yǎng)價(jià)值打分(十分制).下面是兩個小組的打分?jǐn)?shù)據(jù):
第一小組 | ||||||||
第二小組 |
(1)求第一小組數(shù)據(jù)的中位數(shù)與平均數(shù),用這兩個數(shù)字特征中的哪一種來描述第一小組打分的情況更合適?說明你的理由.
(2)你能否判斷第一小組與第二小組哪一個更像是由營養(yǎng)專家組成的嗎?請比較數(shù)字特征并說明理由.
(3)節(jié)目組收集了烹飪該食材的加熱時(shí)間:(單位:)與其營養(yǎng)成分保留百分比的有關(guān)數(shù)據(jù):
食材的加熱時(shí)間(單位:) | ||||||
營養(yǎng)成分保留百分比 |
在答題卡上畫出散點(diǎn)圖,求關(guān)于的線性回歸方程(系數(shù)精確到),并說明回歸方程中斜率的含義.
附注:參考數(shù)據(jù):,.
參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com