設(shè)數(shù)列{an},{bn}滿(mǎn)足a1=b1=6,a2=b2=4,a3=b3,{an-2}是等比數(shù)列,且數(shù)列{bn+1-bn}是等差數(shù)列,其中n∈N*
(1)求a3的值;
(2)求數(shù)列{an}和{bn}的通項(xiàng)公式.
考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)條件,構(gòu)造方程組即可得到結(jié)論.
(2)利用等差數(shù)列的通項(xiàng)公式先求出{bn+1-bn}的通項(xiàng)公式,然后利用累加法即可得到結(jié)論.
解答: 解:(1)∵a1=b1=6,a2=b2=4,a3=b3,{an-2}是等比數(shù)列,
∴a1-2=6-2=4,a2-2=4-2=2,則公比q=
2
4
=
1
2
,則a3-2=2×
1
2
=1
,
即a3=1+2=3.
(2)∵{an-2}是等比數(shù)列,
∴an-2=4×(
1
2
)n-1
=(
1
2
n-3,
∵a3=b3,∴b3=3,
∵{bn+1-bn}是等差數(shù)列,
∴b2-b1,b3-b2,b4-b3為等差數(shù)列,
即-2,-1,b4-b3為等差數(shù)列,公差d=1,則bn+1-bn=-2+n-1=n-3,
即b2-b1=-2,
b3-b2=-2+n-1=-1,

bn-bn-1=-2+n-1=n-4,
兩邊同時(shí)相加得bn-b1=
-2+n-4
2
×(n-1)=
(n-6)(n-1)
2
,
則bn=6+
(n-6)(n-1)
2
點(diǎn)評(píng):本題考查數(shù)列求和、等差等比數(shù)列的通項(xiàng)公式,考查學(xué)生綜合運(yùn)用知識(shí)分析解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題中,
①對(duì)分類(lèi)變量X與Y的隨機(jī)變量K2的觀測(cè)值k來(lái)說(shuō),k越小,判斷“X與Y有關(guān)系”的把握越大;
②設(shè)回歸直線(xiàn)方程為
y
=2-2.5x,當(dāng)變量x增加一個(gè)單位時(shí),y大約減少2.5個(gè)單位;
③已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.1;
④命題p:“
x
x-1
≥0”則¬p:“
x
x-1
<0”
其中錯(cuò)誤命題的個(gè)數(shù)是     ( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,滿(mǎn)足Sn=nan-2n(n-1),a1=1,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,其中bn=
1
a nan+1
,(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an,
(Ⅱ)若對(duì)于任意n∈N*,Tn≥m2-m-
9
5
,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一盒中裝有大小質(zhì)地相同的小球,其中紅球4個(gè),白球、黑球各3個(gè),
(Ⅰ)從中任取兩球,求取得的兩球顏色不同的概率;
(Ⅱ)將紅球標(biāo)上0,1,2,3;白球、黑球分別標(biāo)上0,1,2;現(xiàn)從盒中任意取出兩個(gè)小球.記所取出的兩球標(biāo)號(hào)之積為ξ,求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓心在原點(diǎn)上與直線(xiàn)x+y-2=0相切的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某班數(shù)學(xué)課隨堂測(cè)試時(shí),老師共給出四道題,某學(xué)生能正確解答第一、二、三、四道題的概率分別為
4
5
3
5
、
2
5
1
5
,且各題能否準(zhǔn)確解答互不影響.
(Ⅰ)求該學(xué)生四道題中只有一道題不能正確解答的概率;
(Ⅱ)設(shè)該學(xué)生四道題中能正確解答的題數(shù)記為ξ,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}為單調(diào)遞增的等比數(shù)列,且a2+a5=18,a3•a4=32,{bn}是首項(xiàng)為2,公差為d的等差數(shù)列,其前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)且僅當(dāng)2≤n≤4,n∈N*,Sn≥4+d•log2an2成立,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若存在實(shí)常數(shù)k和b,使得函數(shù)f(x)和g(x)對(duì)其定義域內(nèi)的任意實(shí)數(shù)x分別滿(mǎn)足f(x)≥kx+b和g(x)≤kx+b,則稱(chēng)直線(xiàn)l:y=kx+b為f(x)和g(x)的“分界直線(xiàn)”.已知函數(shù)f(x)=2x2-4和函數(shù)g(x)=4lnx-2,那么函數(shù)f(x)和函數(shù)g(x)的分界直線(xiàn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
16-x2
+lg(1-tanx)的定義域是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案