PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,對人體健康和大氣環(huán)境質量的影響很大。我國PM2.5標準采用世衛(wèi)組織設定的最寬限值,即PM2.5日均值在35微克/立方米以下空氣質量為一級;在35微克/立方米~75微克/立方米之間空氣質量為二級;在75微克/立方米以上空氣質量為超標.
某市環(huán)保局從360天的市區(qū)PM2.5監(jiān)測數(shù)據(jù)中,隨機抽取l5天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉).

(1)從這l5天的數(shù)據(jù)中任取3天的數(shù)據(jù),記表示空氣質量達到一級的天數(shù),求的分布列;
(2)以這l5天的PM2.5日均值來估計這360天的空氣質量情況,則其中大約有多少天的空氣質量達到一級.
(1)分布列為

0
1
2
3





(2)一年中空氣質量達到一級的天數(shù)為144天.

試題分析:(1)由  ,的可能值為0,1,2,3
利用 即得分布列:

0
1
2
3





 
(2)一年中每天空氣質量達到一級的概率為,
 , 得到(天) ,
一年中空氣質量達到一級的天數(shù)為144天.
試題解析:(1)∵  ,的可能值為0,1,2,3
其分布列為        3分

0
1
2
3





       6分
(2)依題意可知,一年中每天空氣質量達到一級的概率為
一年中空氣質量達到一級的天數(shù)為
 , 所以(天)         11分
一年中空氣質量達到一級的天數(shù)為144天              12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

為了倡導健康、低碳、綠色的生活理念,某市建立了公共自行車服務系統(tǒng)鼓勵市民租用公共自行車出行公共自行車按每車每次的租用時間進行收費,具體收費標準如下:
①租用時間不超過1小時,免費;
②租用時間為1小時以上且不超過2小時,收費1元;
③租用時間為2小時以上且不超過3小時,收費2元;
④租用時間超過3小時的時段,按每小時2元收費(不足1小時的部分按1小時計算)已知甲、乙兩人獨立出行,各租用公共自行車一次,兩人租車時間都不會超過3小時,設甲、乙租用時間不超過1小時的概率分別是0.4和0.5 ,租用時間為1小時以上且不超過2小時的概率分別是0.5和0.3.
(1)求甲、乙兩人所付租車費相同的概率;
(2)設甲、乙兩人所付租車費之和為隨機變量,求的分布列和數(shù)學期望E

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

把半圓弧分成4等份,以這些分點(包括直徑的兩端點)為頂點,作出三角形,從這些三角形中任取3個不同的三角形,則這3個不同的三角形中鈍角三角形的個數(shù)X的期望為 (   )
A.B.2C.3D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某學校的籃球隊、羽毛球隊、乒乓球隊各有10名隊員,某些隊員不止參加了一支球隊,具體情況如圖所示,現(xiàn)從中隨機抽取一名隊員,求:

(1)該隊員只屬于一支球隊的概率;
(2)該隊員最多屬于兩支球隊的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知關于x的二次函數(shù)f(x)=ax2-4bx+1.設集合P={-1,1,2,3,4,5}和Q={-2,-1,1,2,3,4},分別從集合P和Q中任取一個數(shù)作為a和b的值,則函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

將一顆質地均勻的骰子(它是一種各面上分別標有點1,2,3,4,5,6的正方體玩具)先后拋擲3次,至少出現(xiàn)一次6點向上的概率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一個口袋裝有n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸2個球(每次摸獎后放回),2個球顏色不同則為中獎.
(1)試用n表示一次摸獎中獎的概率.
(2)若n=5,求3次摸獎的中獎次數(shù)ξ=1的概率及數(shù)學期望.
(3)記3次摸獎恰有1次中獎的概率為P,當n取多少時,P最大?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

10張獎券中有3張是有獎的,某人從中不放回地依次抽兩張,則在第一次抽到中獎券的條件下,第二次也抽到中獎券的概率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

小王參加人才招聘會,分別向AB兩個公司投遞個人簡歷.假定小王得到A公司面試的概率為,得到B公司面試的概率為p,且兩個公司是否讓其面試是獨立的,記X為小王得到面試的公司個數(shù).若X=0時的概率P(X=0)=,則隨機變量X的數(shù)學期望為________.

查看答案和解析>>

同步練習冊答案